【題目】已知正方體的棱長(zhǎng)為2,點(diǎn)分別是棱的中點(diǎn),則二面角的余弦值為_________;若動(dòng)點(diǎn)在正方形(包括邊界)內(nèi)運(yùn)動(dòng),且平面,則線(xiàn)段的長(zhǎng)度范圍是_________.

【答案】

【解析】

延長(zhǎng)AMDC于點(diǎn)Q,過(guò)CAM垂線(xiàn)CG,垂足為G,連接NG,則∠NGC為二面角的平面角,計(jì)算可得結(jié)果;的中點(diǎn),的中點(diǎn),連結(jié),,,取中點(diǎn),連結(jié),推導(dǎo)出平面平面,從而點(diǎn)的軌跡是線(xiàn)段,由此能求出的長(zhǎng)度范圍.

延長(zhǎng)AMDC于點(diǎn)Q,過(guò)CAM垂線(xiàn)CG,垂足為G,連接NG,

則∠NGC為二面角的平面角,

計(jì)算得,

所以

的中點(diǎn),的中點(diǎn),連接,,,取中點(diǎn),連接

點(diǎn),分別是棱長(zhǎng)為2的正方體中棱,的中點(diǎn),

,

,

平面平面

動(dòng)點(diǎn)在正方形(包括邊界)內(nèi)運(yùn)動(dòng),且,

點(diǎn)的軌跡是線(xiàn)段

,

,

當(dāng)重合時(shí),的長(zhǎng)度取最小值,

當(dāng)(或重合時(shí),的長(zhǎng)度取最大值為

的長(zhǎng)度范圍為

故答案為:;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)求的單調(diào)區(qū)間和極值;

(2)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出以下三個(gè)條件:

①數(shù)列是首項(xiàng)為 2,滿(mǎn)足的數(shù)列;

②數(shù)列是首項(xiàng)為2,滿(mǎn)足λR)的數(shù)列;

③數(shù)列是首項(xiàng)為2,滿(mǎn)足的數(shù)列..

請(qǐng)從這三個(gè)條件中任選一個(gè)將下面的題目補(bǔ)充完整,并求解.

設(shè)數(shù)列的前n項(xiàng)和為,滿(mǎn)足______,記數(shù)列,,求數(shù)列{}的前n項(xiàng)和;

(注:如選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)增區(qū)間;

2)函數(shù),當(dāng)時(shí),恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】表示一個(gè)小于或等于的最大整數(shù).如:,,. 已知實(shí)數(shù)列、、對(duì)于所有非負(fù)整數(shù)滿(mǎn)足,其中是任意一個(gè)非零實(shí)數(shù).

)若,寫(xiě)出、、

)若,求數(shù)列的最小值;

)證明:存在非負(fù)整數(shù),使得當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)為曲線(xiàn)上的動(dòng)點(diǎn),點(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上且滿(mǎn)足點(diǎn)的軌跡為.

1)求曲線(xiàn)的極坐標(biāo)方程;

2)設(shè)點(diǎn)的極坐標(biāo)為,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某央企在一個(gè)社區(qū)隨機(jī)采訪(fǎng)男性和女性用戶(hù)各50名,統(tǒng)計(jì)他(她)們一天()使用手機(jī)的時(shí)間,其中每天使用手機(jī)超過(guò)6小時(shí)(含6小時(shí))的用戶(hù)稱(chēng)為手機(jī)迷,否則稱(chēng)其為非手機(jī)迷,調(diào)查結(jié)果如下:

男性用戶(hù)的頻數(shù)分布表

男性用戶(hù)日用時(shí)間分組(

頻數(shù)

20

12

8

6

4

女性用戶(hù)的頻數(shù)分布表

女性用戶(hù)日用時(shí)間分組(

頻數(shù)

25

10

6

8

1

1)分別估計(jì)男性用戶(hù),女性用戶(hù)手機(jī)迷的頻率;

2)求男性用戶(hù)每天使用手機(jī)所花時(shí)間的中位數(shù);

3)求女性用戶(hù)每天使用手機(jī)所花時(shí)間的平均數(shù)與標(biāo)準(zhǔn)差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn),把上各點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)的圖象,關(guān)于有下述四個(gè)結(jié)論:

1)函數(shù)上是減函數(shù);

2)方程內(nèi)有2個(gè)根;

3)函數(shù)(其中)的最小值為;

4)當(dāng),且時(shí),,則.

其中正確結(jié)論的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系.xOy中,曲線(xiàn)C1的參數(shù)方程為 為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρ=4sinθ.

1)求曲線(xiàn)C1的普通方程和C2的直角坐標(biāo)方程;

2)已知曲線(xiàn)C2的極坐標(biāo)方程為,點(diǎn)A是曲線(xiàn)C3C1的交點(diǎn),點(diǎn)B是曲線(xiàn)C3C2的交點(diǎn),且A,B均異于原點(diǎn)O,且|AB|=4,求α的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案