以x軸為對稱軸,原點(diǎn)為頂點(diǎn)的拋物線上的一點(diǎn)P(1,m)到焦點(diǎn)的距離為3,則其方程是

A.y=4x2B.y=8x2      C.y2=4x          D.y2=8x

D

解析試題分析:根據(jù)題意假設(shè)拋物線的方程為.因?yàn)楦鶕?jù)拋物線上的一點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,即可得.所以拋物線的方程為.故選D.本小題考查的知識點(diǎn)為拋物線的定義.
考點(diǎn):1.拋物線的定義.2.數(shù)形結(jié)合的思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

過雙曲線的一個(gè)焦點(diǎn)作實(shí)軸的垂線,交雙曲線于兩點(diǎn),若線段的長度恰等于焦距,則雙曲線的離心率為(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,拋物線的焦點(diǎn)為,準(zhǔn)線為,經(jīng)過且斜率為的直線與拋物線在軸上方的部分相交于點(diǎn),,垂足為,則的面積是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知F是拋物線y2=4x的焦點(diǎn),P是圓x2+y2-8x-8y+31=0上的動(dòng)點(diǎn),則|FP|的最小值是(  )

A.3 B.4 C.5 D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若雙曲線-=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,線段F1F2被拋物線x=y2的焦點(diǎn)分成3∶2的兩段,則此雙曲線的離心率為(  )

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知點(diǎn)M(-3,0)、N(3,0)、B(1,0),動(dòng)圓C與直線MN切于點(diǎn)B,分別過點(diǎn)M、N且與圓C相切的兩條直線相交于點(diǎn)P,則點(diǎn)P的軌跡方程為(  )

A.x2=1 (x>1) B.x2=1(x>0)
C.x2=1(x>0) D.x2=1(x>1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

過雙曲線=1(a>0,b>0)的左焦點(diǎn)F(-c,0)(c>0)作圓x2y2的切線,交雙曲線右支于點(diǎn)P,切點(diǎn)為E,若(),則雙曲線的離心率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

與兩圓x2+y2=1及x2+y2-8x+12=0都外切的圓的圓心在(  )

A.一個(gè)橢圓上 B.雙曲線的一支上
C.一條拋物線上 D.一個(gè)圓上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左、右焦點(diǎn)分別為F1,F2,兩條曲線在第一象限的交點(diǎn)記為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1,e2,則e1·e2的取值范圍是(  )

A.0,B.C.,+∞D.,+∞

查看答案和解析>>

同步練習(xí)冊答案