(1)已知a>b>c,且a+b+c=0,用分析法求證:<a.
(2)f(x)=,先分別求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后歸納猜想一般性結(jié)論,并給出證明.
(1)詳見解析;(2)都為,猜想f(x)+f(1-x)=.
解析試題分析:(1)注意題目指定用分析法證,要特別注意分析法的書寫格式:要證<a,只需證…,直到歸結(jié)到一個由已知很容易得到其成立的不等式為止;其分析的方向是將無理不等式不斷轉(zhuǎn)化為有理不等式,在轉(zhuǎn)化的過程中要注意已知條件的使用,同時不必找充要條件,只須找充分條件即可;(2)先由已知函數(shù)計算出f(0)+f(1),f(-1)+f(2),f(-2)+f(3)的值,尋找規(guī)律不難猜想出:其自變量和為1的兩個自變量所對應(yīng)的函數(shù)值之和也為定值:;證明也就只須用函數(shù)的解析式計算出f(x)+f(1-x)的值即可.
試題解析:(1)證明:要證<a,只需證b2-ac<3a2.
∵ a+b+c=0,∴ 只需證b2+a(a+b)<3a2,只需證2a2-ab-b2>0,
只需證(a-b)(2a+b)>0,只需證(a-b)(a-c)>0.
∵ a>b>c,∴ a-b>0,a-c>0,∴ (a-b)(a-c)>0顯然成立.故原不等式成立;
(2)f(0)+f(1)=+=+=+=,
同理可得:f(-1)+f(2)=,f(-2)+f(3)=.
由此猜想f(x)+f(1-x)=.
證明:f(x)+f(1-x)=+
=+=+==.
考點:1.不等式的證明方法:分析法;2.歸納、猜想與證明.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com