1.設(shè)f(x)=$\left\{\begin{array}{l}x+\frac{2}{x}-5,x>-1\\-{x^{\frac{1}{3}}},x≤-1\end{array}$,則f[f(-8)]=-2.

分析 先求出f(-8)=-(-8)${\;}^{\frac{1}{3}}$=2,從而f[f(-8)]=f(2),由此能求出結(jié)果.

解答 解:∵f(x)=$\left\{\begin{array}{l}x+\frac{2}{x}-5,x>-1\\-{x^{\frac{1}{3}}},x≤-1\end{array}$,
∴f(-8)=-(-8)${\;}^{\frac{1}{3}}$=2,
f[f(-8)]=f(2)=2+$\frac{2}{2}-5$=-2.
故答案為:-2.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=-2|x|+1,定義函數(shù)F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$,則F(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線為2x+y=0,一個焦點(diǎn)為$(\sqrt{5},0)$,則a+b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若$\frac{lg7}{lg5}=\frac{1}{a}$,則7a=( 。
A.$\frac{1}{7}$B.$\frac{1}{5}$C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)滿足$f(x)=1+f(\frac{1}{2}){log_2}x$,則f(4)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若tanα-$\frac{1}{tanα}$=$\frac{3}{2}$,α∈(${\frac{π}{4}$,$\frac{π}{2}}$),則sin(2α+$\frac{π}{4}}$)的值為( 。
A.$-\frac{{\sqrt{2}}}{5}$B.$\frac{{\sqrt{2}}}{5}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某年級有900名學(xué)生,隨機(jī)編號為001,002,…,900,現(xiàn)用系統(tǒng)抽樣方法,從中抽出150人,若015號被抽到了,則下列編號也被抽到的是( 。
A.036B.081C.136D.738

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.sin17°sin223°+sin253°sin313°=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若角α的終邊落在直線y=-x(x≥0)上,則$\frac{sinα}{\sqrt{1-co{s}^{2}α}}$+$\frac{cosα}{\sqrt{1-si{n}^{2}α}}$的值是( 。
A.-2B.2C.0D.1

查看答案和解析>>

同步練習(xí)冊答案