【題目】如圖,點(diǎn)P在正方體ABCD﹣A1B1C1D1的表面上運(yùn)動(dòng),且P到直線BC與直線C1D1的距離相等,如果將正方體在平面內(nèi)展開,那么動(dòng)點(diǎn)P的軌跡在展開圖中的形狀是( 。

A.
B.
C.
D.

【答案】B
【解析】解:在平面BCC1B1上,

P到直線C1D1的距離為|PC1|,

∵P到直線BC與直線C1D1的距離相等,∴點(diǎn)P到點(diǎn)C1的距離與到直線BC的距離相等,

∴軌跡為拋物線,且點(diǎn)C1為焦點(diǎn),BC為準(zhǔn)線;故排除C,D,

同理可得,在平面ABB1A1上,點(diǎn)P到點(diǎn)B的距離與到直線C1D1的距離相等,

從而排除A,

所以答案是:B.

【考點(diǎn)精析】通過靈活運(yùn)用棱柱的結(jié)構(gòu)特征,掌握兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)擬建立一個(gè)藝術(shù)搏物館,采取競標(biāo)的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進(jìn)入最后的招標(biāo).現(xiàn)從建筑設(shè)計(jì)院聘請(qǐng)專家設(shè)計(jì)了一個(gè)招標(biāo)方案:兩家公司從6個(gè)招標(biāo)總是中隨機(jī)抽取3個(gè)總題,已知這6個(gè)招標(biāo)問題中,甲公司可正確回答其中4道題目,而乙公司能正面回答每道題目的概率均為 ,甲、乙兩家公司對(duì)每題的回答都是相獨(dú)立,互不影響的.
(1)求甲、乙兩家公司共答對(duì)2道題目的概率;
(2)請(qǐng)從期望和方差的角度分析,甲、乙兩家哪家公司競標(biāo)成功的可能性更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f( )|對(duì)(0,+∞)恒成立,且 ,則f(x)的單調(diào)遞增區(qū)間是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請(qǐng)歸但求穿墻術(shù).得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術(shù)”: 2 = ,3 = ,4 = ,5 =
則按照以上規(guī)律,若8 = 具有“穿墻術(shù)”,則n=(
A.7
B.35
C.48
D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)平面上點(diǎn)Z1 , Z2 , …,Zn , …分別對(duì)應(yīng)復(fù)數(shù)z1 , z2 , …,zn , …;
(1)設(shè)z=r(cosα+isinα),(r>0,α∈R),用數(shù)學(xué)歸納法證明:zn=rn(cosnα+isinnα),n∈Z+
(2)已知 ,且 (cosα+isinα)(α為實(shí)常數(shù)),求出數(shù)列{zn}的通項(xiàng)公式;
(3)在(2)的條件下,求 |+….

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=4 ,AD=2 ,將△ABD沿BD折起,使得點(diǎn)A折起至A′,設(shè)二面角A′﹣BD﹣C的大小為θ.

(1)當(dāng)θ=90°時(shí),求A′C的長;
(2)當(dāng)cosθ= 時(shí),求BC與平面A′BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(x+1)﹣x2+(2﹣a)x﹣a(a∈R)若存在唯一的正整數(shù)x0 , 使得f(x0)>0,則實(shí)數(shù)a的取值范圍是( 。
A.[ , ]
B.( ,
C.( , ]
D.(ln3,ln2+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合M={x|x2+x﹣2>0}, ,則(UM)∩N=(  )
A.[﹣2,0]
B.[﹣2,1]
C.[0,1]
D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】各項(xiàng)為正的數(shù)列{an}滿足 ,
(1)當(dāng)λ=an+1時(shí),求證:數(shù)列{an}是等比數(shù)列,并求其公比;
(2)當(dāng)λ=2時(shí),令 ,記數(shù)列{bn}的前n項(xiàng)和為Sn , 數(shù)列{bn}的前n項(xiàng)之積為Tn , 求證:對(duì)任意正整數(shù)n,2n+1Tn+Sn為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案