已知:在△ABC中,a、b、c為其三條邊.求證:asin(B-C)+bsin(C-A)+csin(A-B)=0.
考點(diǎn):正弦定理
專題:解三角形
分析:根據(jù)正弦定理,結(jié)合兩角和差的正弦公式,即可證明等式成立.
解答: 解:由正弦定理得
a
sinA
=
b
sinB
=
c
sinC
=2R

∴a=2RsinA,b=2RsinB,c=2RsinC,
故有asin(B-C)+bsin(C-A)+csin(A-B)
=2R[sinAsin(B-C)+sinBsin(C-A)+sinCsin(A-B)]
=2R[sinA(sinBcosC-cosBsinC)+sinB(sinCcosA-cosCsinA)+sinC(sinAcosB-cosAsinB)]
=2R(sinAsinBcosC-sinAcosBsinC+sinBsinCcosA-sinBcosCsinA+sinCsinAcosB-sinCcosAsinB)=0,
∴等式成立.
點(diǎn)評(píng):本題主要考查等式的證明,利用正弦定理是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={lgx,lgy,lg(x+
y
x
)}的子集是B={0,1},則A的最大元素可能是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、24πB、32π
C、52πD、96π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)
2i
2+i
對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+2x+m
x

(1)若m為正常數(shù),求x∈[1,2]上的最小值;
(2)若對(duì)?x∈[1,+∞﹚,f﹙x﹚>0恒成立,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F2(1,0),點(diǎn)H(2,
2
10
3
)在橢圓上.
(1)求橢圓的方程;
(2)點(diǎn)M在圓x2+y2=b2上,且M在第一象限,過M作圓x2+y2=b2的切線交橢圓于P,Q兩點(diǎn),問:△PF2Q的周長(zhǎng)是否為定值?如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax,當(dāng)x∈[-2,2]時(shí),若關(guān)于x的不等式f(x)≥x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x,x∈R,試判斷函數(shù)在(1,+∞)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
1-sinα
,α∈(0,
π
2
)

查看答案和解析>>

同步練習(xí)冊(cè)答案