分析 三棱錐B-ACD的三條側(cè)棱BD⊥AD、DC⊥DA,它的外接球就是它擴展為三棱柱的外接球,求出正三棱柱的底面中心連線的中點到頂點的距離,就是球的半徑,然后求球的表面積.
解答 解:根據(jù)題意可知三棱錐B-ACD的三條側(cè)棱BD⊥AD、DC⊥DA,它的外接球就是它擴展為三棱柱的外接球,求出三棱柱的底面中心連線的中點到頂點的距離,就是球的半徑,
三棱柱ABC-A1B1C1的中,底面邊長為1,1,$\sqrt{3}$,
由題意可得:三棱柱上下底面中點連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,
∴三棱柱ABC-A1B1C1的外接球的球心為O,外接球的半徑為r,
棱柱的高為$\sqrt{3}$,球心到底面的距離為$\frac{\sqrt{3}}{2}$,
三棱柱中,底面△BDC,BD=CD=1,BC=$\sqrt{3}$,∴∠BDC=120°,∴△BDC的外接圓的半徑為:$\frac{\sqrt{3}}{2sin120°}$=1
∴球的半徑為r=$\sqrt{\frac{3}{4}+1}$=$\frac{\sqrt{7}}{2}$.
外接球的表面積為:4πr2=7π.
故答案為:7π.
點評 本題考查空間想象能力,計算能力;三棱柱上下底面中點連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,是本題解題的關(guān)鍵,仔細觀察和分析題意,是解好數(shù)學(xué)題目的前提.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25π | B. | 26π | C. | 27π | D. | 28π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
傾向“平面幾何選講” | 傾向“坐標(biāo)系與參數(shù)方程” | 傾向“不等式選講” | 合計 | |
男生 | 16 | 4 | 6 | 26 |
女生 | 4 | 8 | 12 | 24 |
合計 | 20 | 12 | 18 | 50 |
P(k2≤k0) | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com