1.已知正三角形ABC邊長為2,將它沿高AD翻折,使點B與點C間的距離為$\sqrt{3}$,此時四面體ABCD的外接球的表面積為7π.

分析 三棱錐B-ACD的三條側(cè)棱BD⊥AD、DC⊥DA,它的外接球就是它擴展為三棱柱的外接球,求出正三棱柱的底面中心連線的中點到頂點的距離,就是球的半徑,然后求球的表面積.

解答 解:根據(jù)題意可知三棱錐B-ACD的三條側(cè)棱BD⊥AD、DC⊥DA,它的外接球就是它擴展為三棱柱的外接球,求出三棱柱的底面中心連線的中點到頂點的距離,就是球的半徑,
三棱柱ABC-A1B1C1的中,底面邊長為1,1,$\sqrt{3}$,
由題意可得:三棱柱上下底面中點連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,
∴三棱柱ABC-A1B1C1的外接球的球心為O,外接球的半徑為r,
棱柱的高為$\sqrt{3}$,球心到底面的距離為$\frac{\sqrt{3}}{2}$,
三棱柱中,底面△BDC,BD=CD=1,BC=$\sqrt{3}$,∴∠BDC=120°,∴△BDC的外接圓的半徑為:$\frac{\sqrt{3}}{2sin120°}$=1
∴球的半徑為r=$\sqrt{\frac{3}{4}+1}$=$\frac{\sqrt{7}}{2}$.
外接球的表面積為:4πr2=7π.
故答案為:7π.

點評 本題考查空間想象能力,計算能力;三棱柱上下底面中點連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,是本題解題的關(guān)鍵,仔細觀察和分析題意,是解好數(shù)學(xué)題目的前提.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知角α的頂點與原點重合,始邊與x軸的正半軸重合,終邊在直線y=2x上,則$\frac{sinα+cosα}{sinα-cosα}$的值等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{{lg({{x^2}-2x})}}{{\sqrt{9-{x^2}}}}$的定義域為A.
(1)求A;
(2)已知k>0,集合B={x|$\left\{{\begin{array}{l}{{x^2}-2x+1-{k^2}≥0}\\{x>1}\end{array}}\right.$},且A∩B≠∅,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知復(fù)數(shù)z的實部和虛部都是整數(shù),
(Ⅰ)若復(fù)數(shù)z為純虛數(shù),且|z-1|=|-1+i|,求復(fù)數(shù)z;
(Ⅱ)若復(fù)數(shù)z滿足z+$\frac{10}{z}$是實數(shù),且1<z+$\frac{10}{z}$≤6,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在三棱錐S-ABC中,△ABC是邊長為4$\sqrt{3}$的等邊三角形,SA=SC=2$\sqrt{7}$,平面SAC⊥平面ABC,則該三棱錐外接球的表面積為65π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知邊長為$2\sqrt{3}$的菱形ABCD中,∠BAD=60°,沿對角線BD折成二面角A-BD-C為120°的四面體ABCD,則四面體的外接球的表面積為( 。
A.25πB.26πC.27πD.28π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若兩直線a、b與面α所成的角相等,則a與b的位置關(guān)系是平行或相交或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某校為調(diào)查高中生選修課的選修傾向與性別關(guān)系,隨機抽取50名學(xué)生,得到如表的數(shù)據(jù)表:
傾向“平面幾何選講”傾向“坐標(biāo)系與參數(shù)方程”傾向“不等式選講”合計
男生164626
女生481224
合計20121850
(Ⅰ)根據(jù)表中提供的數(shù)據(jù),選擇可直觀判斷“選課傾向與性別有關(guān)系”的兩種,作為選課傾向的變量的取值,并分析哪兩種選擇傾向與性別有關(guān)系的把握大;
(Ⅱ)在抽取的50名學(xué)生中,按照分層抽樣的方法,從傾向“平面幾何選講”與傾向“坐標(biāo)系與參數(shù)方程”的學(xué)生中抽取8人進行問卷.若從這8人中任選3人,記傾向“平面幾何選講”的人數(shù)減去與傾向“坐標(biāo)系與參數(shù)方程”的人數(shù)的差為ξ,求ξ的分布列及數(shù)學(xué)期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+b)(b+d)}$.
P(k2≤k00.1000.0500.0100.0050.001
k02.7063.8416.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某幾何體的三視圖都是全等圖形,則該幾何體一定是( 。
A.球體B.長方體C.三棱錐D.圓錐

查看答案和解析>>

同步練習(xí)冊答案