【題目】幾何體三視圖如圖所示,其中俯視圖為邊長為的等邊三角形,則此幾何體的體積為__________

【答案】

【解析】根據(jù)幾何體的三視圖可以判斷直觀圖為


它是從棱柱正三棱柱上切掉幾何體后剩余的幾何體.可以將該幾何體分為棱錐和棱錐.其中, .點到面的距離為正三角形的高,所以.兩者加起來得到.

故本題正確答案為.

點睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , , , 平面.

(1)求證: 平面

(2)若為線段的中點,且過三點的平面與線段交于點,確定點的位置,說明理由;并求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質(zhì)量指標存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標值.若該項質(zhì)量指標值落在內(nèi),則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.

(1)根據(jù)圖,1估計乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標值的中位數(shù);

(2)若將頻率視為概率,某個月內(nèi)甲,乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件?

(3)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有85%的把握認為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲,乙兩條流水線的選擇有關(guān)”?

附: (其中為樣本容量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)的乒乓球被指定為乒乓球比賽專用球.日前有關(guān)部門對某批產(chǎn)品進行了抽樣檢測,檢測結(jié)果如下表所示:

抽取球數(shù)n

50

100

200

500

1 000

2 000

優(yōu)等品數(shù)m

45

92

194

470

954

1 902

優(yōu)等品頻率

(1)計算表中乒乓球為優(yōu)等品的頻率.

(2)從這批乒乓球產(chǎn)品中任取一個,檢測出為優(yōu)等品的概率是多少?(結(jié)果保留到小數(shù)點后三位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標系與參數(shù)方程】

在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系.已知曲線的極坐標方程為.傾斜角為,且經(jīng)過定點的直線與曲線交于兩點.

(Ⅰ)寫出直線的參數(shù)方程的標準形式,并求曲線的直角坐標方程;

(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為.

(1)求出圓的直角坐標方程;

(2)已知圓軸相交于, 兩點,直線 關(guān)于點對稱的直線為.若直線上存在點使得,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標平面內(nèi),以坐標原點O為極點, 軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程是,直線的參數(shù)方程是為參數(shù)).

(1)求直線的普通方程和曲線的直角坐標方程;

(2)求曲線上的點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), (a>0且a≠1)是定義域為R的奇函數(shù).

(Ⅰ) 求的值

(Ⅱ)若,試求不等式的解集;

(Ⅲ)若,且,求上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓),圓),若圓的一條切線與橢圓相交于兩點.

(1)當, 時,若點都在坐標軸的正半軸上,求橢圓的方程;

(2)若以為直徑的圓經(jīng)過坐標原點,探究是否滿足,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案