方程++…+=7的非負整數(shù)解的個數(shù)為(  )

A.15       B.330        C.21        D.495

 

【答案】

B

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•漳州模擬)本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩陣A;
(Ⅱ) 矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)選修4-4:坐標系與參數(shù)方程
已知直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3 
y=
3
(t為參數(shù)).以直角坐標系xOy中的原點O為 極點,x軸的非負半軸為極軸,圓C的極坐標方程為ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐標方程;
(Ⅱ) P為圓C上的點,求P到l距離的取值范圍.
(3)選修4-5:不等式選講
已知關(guān)于x的不等式:|x-1|+|x+2|≥a2+2|a|-5對任意x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)本題有(1),(2),(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑.
(1)選修4-2:矩陣與變換
如圖所示:△OAB在伸縮變換M作用下變?yōu)椤鱋A1B1
(i)求矩陣M的特征值及相應(yīng)的特征向量;
(ii)求逆矩陣M-1以及(M-120
(2)選修4-4:坐標系與參數(shù)方程.
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
(θ為參數(shù)),曲線C2的參數(shù)方程為
x=2t
y=t+1
(t為參數(shù))
(i)若將曲線C1與C2上各點的橫坐標都縮短為原來的一半,分別得到曲線C1和C2,求出曲線C1和C2的普通方程;
(ii)以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,求過極點且與C2垂直的直線的極坐標方程.
(3)選修4-5:不等式選講
已知a,b,c為實數(shù),且a+b+c+2-2m=0,a2+
b 2
4
+
c 2
9
+m-1=0
(i)求證:a2+
b 2
4
+
c 2
9
(a+b+c) 2
14

(ii)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三5月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

本題有(1).(2).(3)三個選做題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.

(1)(本小題滿分7分)選修4-2:矩陣與變換選做題

已知矩陣A=有一個屬于特征值1的特征向量.  

(Ⅰ) 求矩陣A;

(Ⅱ) 矩陣B=,點O(0,0),M(2,-1),N(0,2),求在矩陣AB的對應(yīng)變換作用下所得到的的面積. 

(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程選做題

在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知曲線的參數(shù)方程為,曲線的極坐標方程為

(Ⅰ)將曲線的參數(shù)方程化為普通方程;(Ⅱ)判斷曲線與曲線的交點個數(shù),并說明理由.

(3)(本小題滿分7分)選修4-5:不等式選講選做題

已知函數(shù),不等式上恒成立.

(Ⅰ)求的取值范圍;

(Ⅱ)記的最大值為,若正實數(shù)滿足,求的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不定方程x1+x2+x3+x4=7的非負整數(shù)解有多少組?正整數(shù)解有多少組?

查看答案和解析>>

同步練習(xí)冊答案