精英家教網 > 高中數學 > 題目詳情
如圖,在直三棱柱ABC-A1B1C1中,E,F分別是A1B,A1C的中點,點D在B1C1上,A1D⊥B1C.求證:
(1)EF平面ABC;
(2)平面A1FD⊥平面BB1C1C.
證明:(1)因為E,F分別是A1B,A1C的中點,
所以EFBC,又EF?面ABC,BC?面ABC,所以EF平面ABC;
(2)因為直三棱柱ABC-A1B1C1,所以BB1⊥面A1B1C1,BB1⊥A1D,
又A1D⊥B1C,BB1∩B1C=B1,所以A1D⊥面BB1C1C,又A1D?面A1FD,所以平面A1FD⊥平面BB1C1C.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐E-ABCD中,底面ABCD為矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F為CE的中點,求證:
(1)AE平面BDF;
(2)平面BDF⊥平面ACE.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知PA⊥矩形ABCD所在平面,M、N分別為AB、PC的中點;
(Ⅰ)求證:MN平面PAD;
(Ⅱ)求證:MN⊥CD.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知直三棱柱ABC-A1B1C1中,△ABC為等腰直角三角形,且∠BAC=90°,且AB=AA1,D,E,F分別為B1A,C1C,BC的中點.
(Ⅰ)求證:DE平面ABC;
(Ⅱ)求證:B1F⊥平面AEF;
(Ⅲ)求二面角A-EB1-F的大。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,已知ABCD是直角梯形,∠ABC=90°,ADBC,AD=2,AB=BC=1,PA⊥平面ABCD.
(1)證明:PC⊥CD;
(2)若E是PA的中點,證明:BE平面PCD;
(3)若PA=3,求三棱錐B-PCD的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P是DD1的中點,設Q是CC1上的點,問:當點Q在什么位置時,平面D1BQ平面PAO?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

平面α與平面β平行的條件可以是( 。
A.平面α內有無窮多條直線與β平行
B.直線lα,且lβ
C.直線l?α,m?β,且lβ,mα
D.平面α內的任何直線都平行于β

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在正方體ABCD-A1B1C1D1中,E,F,M分別是BB1,CC1與AB的中點,
(1)求證:AE平面A1DF;
(2)求證:A1M⊥平面AED;
(3)正方體棱長為2,求三棱錐A1-DEF的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知在三棱錐P-ABC中,PA⊥BC,PB⊥AC,則點P在平面ABC上的射影為△ABC的(  )
A.重心B.外心C.內心D.垂心

查看答案和解析>>

同步練習冊答案