已知雙曲線數(shù)學(xué)公式的離心率為e,左、右兩焦點分別為F1、F2,焦距為2c,拋物線C以F2為頂點,F(xiàn)1為焦點,點P為拋物線與雙曲線右支上的一個交點,若a|PF2|+c|PF1|=8a2,則e的值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    3
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:作出圖象,結(jié)合圖象知拋物線準線的方程為x=3c,根據(jù)拋物線的定義可得|PF1|=|PR|=3c-x0,根據(jù)雙曲線的第二定義可得 =e,由已知a|PF2|+c|PF1|=8a2,可得e=
解答:解:如右圖所示,設(shè)點P的坐標為(x0,y0),由拋物線以F2為頂點,F(xiàn)1為焦點,可得其準線的方程為x=3c,
根據(jù)拋物線的定義可得|PF1|=|PR|=3c-x0,又由點P為雙曲線上的點,
根據(jù)雙曲線的第二定義可得 =e,即得|PF2|=ex0-a,
由已知a|PF2|+c|PF1|=8a2,可得-a2+3c2=8a2,即e2=3,由e>1可得e=
故選A.
點評:本題考查雙曲線的性質(zhì)和應(yīng)用,解題時要結(jié)合題設(shè)條件,作出圖象,數(shù)形結(jié)合進行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為(  )
A、
x2
4
-
y2
12
=1
B、
x2
12
-
y2
4
=1
C、
x2
10
-
y2
6
=1
D、
x2
6
-
y2
10
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的離心率為2,F(xiàn)1、F2是左右焦點,P為雙曲線上一點,且∠F1PF2=60°,S△PF1F2=12
3
.該雙曲線的標準方程為
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年云南省高三上學(xué)期第一次月考試題文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知雙曲線的離心率為2,焦點到漸近線的距離等于,過右焦點的直線

 

交雙曲線于、兩點,為左焦點,

(Ⅰ)求雙曲線的方程;

(Ⅱ)若的面積等于,求直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆河北省高二上學(xué)期第二次月考理科數(shù)學(xué)試卷 題型:解答題

已知雙曲線的離心率為2,焦點到漸近線的距離為,點P的坐標為(0,-2),過P的直線l與雙曲線C交于不同兩點M、N.  

(1)求雙曲線C的方程;

(2)設(shè)(O為坐標原點),求t的取值范圍

 

查看答案和解析>>

同步練習(xí)冊答案