設(shè)橢圓過點(diǎn),離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)過點(diǎn)的動(dòng)直線與橢圓相交與兩不同點(diǎn)時(shí),在線段上取點(diǎn),滿足=,證明:點(diǎn)的軌跡與無關(guān).

解(Ⅰ)由題意解得,所求橢圓方程為 .…………4分

(Ⅱ)方法一

 設(shè)點(diǎn)Q、A、B的坐標(biāo)分別為

由題設(shè),

  (1)+(2)×2并結(jié)合(3),(4)得,…………14分

點(diǎn)總在定直線上.即點(diǎn)的軌跡與無關(guān).…………15分

方法二

設(shè)點(diǎn),由題設(shè) =

四點(diǎn)共線,可得,…………6分

于是

                             (1)

                             (2)

由于在橢圓C上,將(1),(2)分別代入C的方程整理得

      (3)

       (4)

…………10分

(4)-(3)    得   ,

,…………14分

點(diǎn)總在定直線上.即點(diǎn)的軌跡與無關(guān).…………15分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆四川省高二5月月考考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓過點(diǎn),離心率為,左、右焦點(diǎn)分別為、.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為、,為坐標(biāo)原點(diǎn).設(shè)直線、的斜率分別為、

(i)證明:

(ii)問直線上是否存在點(diǎn),使得直線、、的斜率、、滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽省毫州市高二上學(xué)期質(zhì)量檢測(cè)理科數(shù)學(xué) 題型:解答題

如圖,已知橢圓過點(diǎn).,離心率為,左、右焦點(diǎn)分別為、.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為、,為坐標(biāo)原點(diǎn).

(I)求橢圓的標(biāo)準(zhǔn)方程;

(II)設(shè)直線、的斜線分別為.      證明:

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省高考真題 題型:解答題

如圖,已知橢圓過點(diǎn),離心率為,左、右焦點(diǎn)分別為F1、F2。點(diǎn)P為直線l:x+y=2上且不在x軸上的任意一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn)。
(I)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2。
(i)證明:
(ii)問直線l上是否存在點(diǎn)P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省紹興一中高三(下)回頭考試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)橢圓過點(diǎn),離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)當(dāng)過點(diǎn)P(4,1)的動(dòng)直線l與橢圓C相交與兩不同點(diǎn)A,B時(shí),在線段AB上取點(diǎn)Q,滿足=λ,證明:點(diǎn)Q的軌跡與λ無關(guān).

查看答案和解析>>

同步練習(xí)冊(cè)答案