設(shè)過點(diǎn)的直線分別與正半軸, 軸正半軸交于兩點(diǎn),為坐標(biāo)原點(diǎn),則三角形面積最小時(shí)直線方程為                   
此題考查直線方程的求法、均值不等式的應(yīng)用;
【解法一】設(shè)直線的方程為,則,所以,當(dāng)且僅當(dāng)時(shí)上式取得等號(hào),所以三角形面積最小時(shí)直線方程為
【解法二】設(shè)直線的方程為,且,當(dāng)且僅當(dāng)等號(hào)成  立,此時(shí),所以方程為,即為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(4,1),B(3,4),C(-1,2),BD是∠ABC的平分線,求點(diǎn)D的坐標(biāo)及BD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知O為坐標(biāo)原點(diǎn),點(diǎn)A(x,y)與點(diǎn)B關(guān)于x軸對(duì)稱,
j
=(0,1)
,則滿足不等式
OA
2
+
j
AB
≤0
的點(diǎn)A的集合用陰影表示(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,點(diǎn)A,B,C是圓O上的三點(diǎn),線段OC與線段AB交于圓內(nèi)一點(diǎn),若
OC
=m
OA
+n
OB
,則( 。
A.0<m+n<1B.m+n>1C.m+n<-1D.-1<m+n<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率,左、右焦點(diǎn)分別為,定點(diǎn)P,點(diǎn)在線段的中垂線上.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于M、N兩點(diǎn),直線的傾斜角分別為,求證:直線過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分10分.
  已知兩點(diǎn)、,點(diǎn)是直角坐標(biāo)平面上的動(dòng)點(diǎn),若將點(diǎn)的橫坐標(biāo)保持不變、縱坐標(biāo)擴(kuò)大到倍后得到點(diǎn)滿足
(1) 求動(dòng)點(diǎn)所在曲線的軌跡方程;
(2)(理科)過點(diǎn)作斜率為的直線交曲線兩點(diǎn),且滿足,又點(diǎn)關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn),試問四點(diǎn)是否共圓,若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說明理由.
(文科)過點(diǎn)作斜率為的直線交曲線兩點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),試判斷點(diǎn)是否在曲線上,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓的半徑為定長(zhǎng),是圓所在平面內(nèi)一定點(diǎn),是圓上任意一點(diǎn),線段的垂直平分線與直線相交于點(diǎn),當(dāng)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡可能是下列圖形中的:               .(填寫所有可能圖形的序號(hào))
①點(diǎn);②直線;③圓;④拋物線;⑤橢圓;⑥雙曲線;⑦雙曲線的一支.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程是:  .
(Ⅰ)求曲線的直角坐標(biāo)方程,直線的普通方程;
(Ⅱ)求曲線與直線交與兩點(diǎn),求長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
設(shè)橢圓的離心率,右焦點(diǎn)到直線的距離為坐標(biāo)原點(diǎn).
(I)求橢圓的方程;
(II)過點(diǎn)作兩條互相垂直的射線,與橢圓分別交于兩點(diǎn),證明點(diǎn)到直
的距離為定值,并求弦長(zhǎng)度的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案