計算:
(1)(-3
3
8
)
2
3
+0.01-
1
2
-(
2
-1)-1+(
3
-
2
0;
(2)log
2
2+log927+
1
4
log4
1
16
考點:對數(shù)的運算性質,有理數(shù)指數(shù)冪的化簡求值
專題:函數(shù)的性質及應用
分析:(1)直接利用有理指數(shù)冪的運算法則求解即可.
(2)直接利用對數(shù)的運算法則求解即可.
解答: 解:(1)(-3
3
8
)
2
3
+0.01-
1
2
-(
2
-1)-1+(
3
-
2
0
=
9
4
+10-
2
-1+1
=
49
4
-
2

(2)log
2
2+log927+
1
4
log4
1
16

=2+
3
2
-
1
2

=3.
點評:本題考查有理指數(shù)冪的運算與對數(shù)的運算法則的應用,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若兩條直線都與同一平面成相等的角,則這兩條直線相互平行
 
(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<
π
2
)的圖象如圖所示,則ω=
 
,φ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于x的一元二次方程2x2-tx-2=0有兩個實根為α,β,
(1)若x1<x2為區(qū)間[α,β]上的兩個不同的點,求證:
(i)x12+x22>2x1x2;
(ii)4x1x2-t(x1+x2)-4<0;
(2)設f(x)=
4x-t
x2+1
,f(x)在區(qū)間[α,β]上的最大值和最小值分別為A和B,g(t)=A-B,求g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的導函數(shù)圖象如圖所示,若△ABC為銳角三角形,則一定成立的是( 。
A、f(cosA)<f(cosB)
B、f(sinA)<f(cosB)
C、f(sinA)>f(sinB)
D、f(sinA)>f(cosB)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx-2在x=1處有極值,則ab的最大值( 。
A、2B、3C、6D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-3x+2=0,x∈R },B={x|0<x<6,x∈N },則滿足條件A⊆C⊆B的集合C的個數(shù)為(  )
A、4B、5C、7D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+2,x≤-1
x2,-1<x<2
2x,x≥2

(1)求f(π);
(2)在坐標系中畫出y=f(x)的圖象;
(3)若f(a)=3,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=ax+2+3恒過定點
 

查看答案和解析>>

同步練習冊答案