已知x>0,且x≠1,數(shù)列{an}的前n項(xiàng)和為Sn,它滿(mǎn)足條件
xn-1
Sn
=1-
1
x
,數(shù)列{bn}中,bn=an•lgan
(1)求數(shù)列{bn}的前n項(xiàng)和Tn
(2)若對(duì)一切n∈N*都有bn<bn+1,求x的取值范圍.
考點(diǎn):數(shù)列與不等式的綜合
專(zhuān)題:等差數(shù)列與等比數(shù)列,不等式的解法及應(yīng)用
分析:(1)化簡(jiǎn)條件
xn-1
Sn
=1-
1
x
,表示出Sn,利用an=Sn-Sn-1求數(shù)列{an}通項(xiàng)公式,從而確定bn應(yīng)用對(duì)數(shù)運(yùn)算的性質(zhì)表示出Tn,利用錯(cuò)位相減法求和即可;
(2)將(1)中所求bn代入bn<bn+1,化簡(jiǎn)后分情況討論,當(dāng)x>1時(shí),由lgx>0可得x>
n
n+1
,解得,x>1;當(dāng)0<x<1時(shí),由lgx<0可得,x<
n
n+1
,解得0<x<
1
2
解答: 解析:(1)∵
xn-1
Sn
=1-
1
x
,
Sn=
x(xn-1)
x-1
,
當(dāng)n=1時(shí),a1=S1=
x(x1-1)
x-1
=x
,
當(dāng)n≥2時(shí),an=Sn-Sn-1=
x(xn-1)
x-1
-
x(xn-1-1)
x-1
=xn

an=xn(n∈N*),
此時(shí)bn=an•lgxn=xn•lgxn=n•xnlgx,
∴Tn=b1+b2+…+bn=lgx•(x+2x2+3x2+…+nxn),
設(shè)un=x+2x2+3x3+…+nxn,
則xun=x2+2x3+3x4+…+(n-1)xn+nxn+1,
∴(1-x)un=x+x2+x3+…+xn-nxn+1=
x(xn-1)
x-1
-nxn+1

un=
nxn+1
x-1
-
x(xn-1)
(x-1)2
,
Tn=lgx•[
nxn+1
x-1
-
x(xn-1)
(x-1)2
]

(2)由bn<bn+1?nxnlgx<(n+1)xn+1lgx知,
①當(dāng)x>1時(shí),由lgx>0可得,
x>
n
n+1
,
n
n+1
<1
(n∈N*)x>1
x>
n
n+1
對(duì)一切n∈N*都成立,
∴解得,x>1.
②當(dāng)0<x<1時(shí),由lgx<0可得,
n>(n+1)x,
x<
n
n+1

n
n+1
1
2
(n∈N*),0<x<1,
∴0<x<
n
n+1
對(duì)一切n∈N*都成立
∴此時(shí)的解為0<x<
1
2
,由①②可知,對(duì)一切n∈N*,
都有bn<bn+1的取值范圍是0<x<
1
2
或a>1.
點(diǎn)評(píng):本題主要考查an=Sn-Sn-1的靈活應(yīng)用,錯(cuò)位相減法求和,不等式恒成立問(wèn)題的解決等綜合知識(shí),屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+
π
6
)+2sin2
ω
2
x(ω>0),已知函數(shù)f(x)的圖象的相鄰對(duì)稱(chēng)軸的距離為π.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若△ABC的內(nèi)角為A,B,C所對(duì)的邊分別為a,b,c(其中b<c),且f(A)=
3
2
,△ABC面積為S=6
3
,a=2
7
,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-2|-a.
(1)當(dāng)a=1時(shí),求f(x)≤1的解集;
(2)若f(x)≥|x+3|恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}為等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,a3=4,a6=32
(1)求數(shù)列{an}的通項(xiàng)公式an 及前n項(xiàng)和Sn
(2)設(shè)T=Sn+
64
Sn+1
,求T的最小值及此時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓Γ:
x2
a2
+
y2
b2
=1( a>b>0)的焦距為2
3
,一個(gè)焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個(gè)等邊三角形,直線l:y=2x+b(b∈R)與橢圓Γ相交于A、B兩點(diǎn),且∠AOB為鈍角.
(1)求橢圓Γ的方程;
(2)求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的首項(xiàng)為10,公差為2,等比數(shù)列{bn}的首項(xiàng)為1,公比為2,n∈N*
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)第n個(gè)正方形的邊長(zhǎng)為Cn=min{an,bn},求前n個(gè)正方形的面積之和Sn.(注:min{a,b}表示a與b的最小值.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列結(jié)論:
①相等的角在直觀圖中仍然相等;
②相等的線段在直觀圖中仍然相等;
③若兩條線段平行,則在直觀圖中對(duì)應(yīng)的兩條線段仍然平行.其中結(jié)論正確的是
 
.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①函數(shù)f(x)=4cos(2x+
π
3
)的一個(gè)對(duì)稱(chēng)中心為(-
12
,0);
②已知函數(shù)f(x)=min{sinx,cosx},則f(x)的值域?yàn)閇-1,
2
2
];
③若α、β均為第一象限角,且α>β,則sinα>sinβ.
④f(x)=4sin(2x+
π
3
)(x∈R),由f(x1)=f(x2)=0可得x1-x2是π的整數(shù)倍;
⑤若f(x)是R上的奇函數(shù),它的最小正周期為T(mén),則f(-
T
2
)=0.
其中所有真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xn+1(n∈N*)的圖象與直線x=1交于點(diǎn)P,若函數(shù)f(x)的圖象在點(diǎn)P處的切線與x軸交點(diǎn)的橫坐標(biāo)為xn,則log2014x1+log2014x2+…+log2014x2013的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案