精英家教網 > 高中數學 > 題目詳情
如圖,橢圓中心在坐標原點,F為左焦點,當時,其離心率為此類橢圓被稱為“黃金橢圓”,類比“黃金橢圓”,可推算出”黃金雙曲線”的離心率e等于(    )
A.B.C.D.
A

分析:類比“黃金橢圓”,在黃金雙曲線中,當時,|BF|2+|AB|2=|AF|2,由此可知b2+c2+c2=a2+c2+2ac,整理得c2=a2+ac,即e2-e-1=0,解這個方程就能求出黃金雙曲線的離心率e.
解:類比“黃金橢圓”,在黃金雙曲線中,|OA|=a,|OB|=b,|OF|=c,
時,|BF|2+|AB|2=|AF|2,
∴b2+c2+c2=a2+c2+2ac,
∵b2=c2-a2,整理得c2=a2+ac,
∴e2-e-1=0,解得 e=,或 e=(舍去).
故黃金雙曲線的離心率e=
故選A.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率為,且橢圓上一點與橢圓的兩個焦點構成的三角形周長為
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓交于兩點,且以為直徑的圓過橢圓的右頂點
面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在拋物線上有一點,它到焦點的距離是20,則點的坐標是_________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知曲線C:,直線l:y=2x+b,那么曲C與直線l相切的充要條件是
A.b=B.b=-C.b=5D.b=或b=-

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

橢圓的長軸長為4,焦距為2,F1、F2分別為橢圓的左、右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點
(1)求橢圓的標準方程和動點的軌跡的方程。
(2)過橢圓的右焦點作斜率為1的直線交橢圓于A、B兩點,求的面積。
(3)設軌跡軸交于點,不同的兩點在軌跡上,
滿足求證:直線恒過軸上的定點。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若拋物線y2=4x的焦點是F,準線是l,點M(1,2)是拋物線上一點,則經過點F、M且與l相切的圓一共有
A.0個B.1個C.2個D.4個

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.圓錐曲線上任意兩點連成的線段稱為弦。若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦。已知點是圓錐曲線C上不與頂點重合的任意兩點,是垂直于軸的一條垂軸弦,直線分別交軸于點和點

(1)試用的代數式分別表示;
(2)若C的方程為(如圖),求證:是與和點位置無關的定值;
(3)請選定一條除橢圓外的圓錐曲線C,試探究經過某種四則運算(加、減、乘、除),其結果是否是與和點位置無關的定值,寫出你的研究結論并證明。
(說明:對于第3題,將根據研究結論所體現的思維層次,給予兩種不同層次的評分)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

是曲線上的點,,則
(    )
A.小于10B.大于10C.不大于10D.不小于10

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

過點(1,0)的直線與中心在原點,焦點在x軸上且離心率為的橢圓C相交于A、B兩點,直線y=x過線段AB的中點,同時橢圓C上存在一點與其右焦點關于直線l對稱,試求直線l與橢圓C的方程  

查看答案和解析>>

同步練習冊答案