19.某幾何體的三視圖如圖所示,若該幾何體的體積為$\frac{2π}{3}$,則a的值為( 。
A.1B.2C.2$\sqrt{2}$D.$\root{3}{2}$

分析 由三視圖可知,該幾何體是圓柱中挖去兩個(gè)半球,用a表示體積,即可求出a.

解答 解:由三視圖可知,該幾何體是圓柱中挖去兩個(gè)半球,
∵該幾何體的體積為$\frac{2π}{3}$,則$π×(\frac{a}{2})^{2}×a-\frac{4}{3}×π×(\frac{a}{2})^{3}=\frac{2}{3}π$,
解得a=2
故選:B

點(diǎn)評(píng) 本題考查了由三視圖求幾何體的體積,屬于中檔題,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若x,y滿足$\left\{\begin{array}{l}x≥0\;\\ x-y≤1\;,\;\\ x+y≤1\;\end{array}\right.$且z=x+ay的最大值為2,則a=2,-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.4B.8C.14D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列函數(shù)中,周期為1的奇函數(shù)是(  )
A.y=cos2πxB.y=sinπxcosπxC.$y=tan\frac{π}{2}x$D.$y=sin(2πx+\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知{an}是等差數(shù)列,Sn為其前n項(xiàng)和,則下列結(jié)論一定成立的是( 。
A.a1a8≤a2a7B.a1a8≥a2a7C.S1S8<S2S7D.S1S8≥S2S7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知x∈R,則“|x-3|-|x-1|<2”是“x>3”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若f(x)=x3+ax2+bx-a2-7a在x=1處取得極大值10,則$\frac{a}$的值為$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點(diǎn)為F,直線y=kx(k>0)與橢圓C交于A,B兩點(diǎn),若$AF⊥BF,∠FAB∈(0,\frac{π}{12}]$,則C的離心率取值范圍為( 。
A.$[\frac{{\sqrt{2}}}{2},1)$B.$[\frac{{\sqrt{6}}}{3},1)$C.$[\frac{{\sqrt{3}}}{3},1)$D.$[\frac{2}{3},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{\begin{array}{l}x,\;0<x≤1\\ 2f(x-1),x>1\end{array}\right.$,則$f(\frac{3}{2})$=1,f(f(3))=8.

查看答案和解析>>

同步練習(xí)冊(cè)答案