12.已知△ABC的兩個(gè)頂點(diǎn)A,B分別為橢圓x2+5y2=5的左焦點(diǎn)和右焦點(diǎn),且三個(gè)內(nèi)角A,B,C滿足關(guān)系式sinB-sin A=sinC.
(1)求線段AB的長(zhǎng)度;
(2)求頂點(diǎn)C的軌跡方程.

分析 (1)化簡(jiǎn)橢圓為標(biāo)準(zhǔn)方程,求出a,b,c,即可求解線段AB的長(zhǎng)度.
(2利用正弦定理轉(zhuǎn)化已知條件為線段方程,利用雙曲線定義求解軌跡方程即可.

解答 解:(1)將橢圓方程化為標(biāo)準(zhǔn)形式為$\frac{{x}^{2}}{5}$+y2=1.
∴a2=5,b2=1,c2=a2-b2=4,
則A(-2,0),B(2,0),|AB|=4.
(2)∵sin B-sin A=sin C,
∴由正弦定理得
|CA|-|CB|=|AB|=2<|AB|=4,
即動(dòng)點(diǎn)C到兩定點(diǎn)A,B的距離之差為定值.
∴動(dòng)點(diǎn)C的軌跡是雙曲線的右支,并且c=2,a=1,
∴所求的點(diǎn)C的軌跡方程為x2-$\frac{{y}^{2}}{3}$=1(x>1).

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),軌跡方程的求法,雙曲線的定義的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)p:x2-x-20>0,q:5<x<9,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=blnx.
(1)當(dāng)b=1時(shí),求函數(shù)G(x)=x2-x-f(x)在區(qū)間$[{\frac{1}{2},e}]$上的最大值與最小值;
(2)若在[1,e]上存在x0,使得x0-f(x0)<-$\frac{1+b}{x_0}$成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若a1=1,an+1=3Sn(n≥1),則數(shù)列{an}的通項(xiàng)公式an=$\left\{\begin{array}{l}{1,n=1}\\{3×{4}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知命題p:?x∈R使得x2+x+1<0;命題q:?x∈[-1,2],使得x2-1>0,則p∧¬q的真假為假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{({a-2})x+3,x≤1}\\{\frac{2a}{x},x>1}\end{array}}\right.$在(-∞,+∞)上是減函數(shù),則a的取值范圍為(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知⊙O的半徑為5,點(diǎn)P到圓心O的距離為8,那么點(diǎn)P與⊙O的位置關(guān)系是( 。
A.點(diǎn)P在⊙O上B.點(diǎn)P在⊙O內(nèi)C.點(diǎn)P在⊙O外D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在正項(xiàng)等比數(shù)列{an}中,lga3+lga6+lga9=3,則a1a11的值是100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若過點(diǎn)P(2,2)可以向圓x2+y2-2kx-2y+k2-k=0作兩條切線,則實(shí)數(shù)k的取值范圍是(-1,1)∪(4,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案