分析 由直線ax-by+8=0(a>0,b>0)經(jīng)過x2+y2+4x-4y=0的圓心,可得a+b=4,則$\frac{1}{a}$+$\frac{1}$=$\frac{1}{4}$($\frac{1}{a}$+$\frac{1}$)(a+b)=$\frac{1}{4}$(2+$\frac{a}+\frac{a}$),再用基本不等式求最小值.
解答 解:∵圓x2+y2+4x-4y=0的圓心坐標是(-2,2),
直線ax-by+8=0過圓心,∴a+b=4,
∴$\frac{1}{a}$+$\frac{1}$=$\frac{1}{4}$($\frac{1}{a}$+$\frac{1}$)(a+b)=$\frac{1}{4}$(2+$\frac{a}+\frac{a}$)≥1,
當b=a=2時取等號.
故$\frac{1}{a}$+$\frac{1}$的最小值為1,
故答案為1.
點評 本題考查了基本不等式的應(yīng)用,考查了圓的一般式方程,解題的關(guān)鍵是得出a+b=4.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 圓 | B. | 橢圓 | C. | 雙曲線 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-3,0] | B. | (-3,1] | C. | [-1,3)∪(3,+∞) | D. | [-1,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2x-y+1=0 | B. | 2x-y-4=0 | C. | x+2y-2=0 | D. | x+2y-4=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{5\sqrt{42}}}{2}$ | B. | $5\sqrt{42}$ | C. | $5\sqrt{3}$ | D. | $5\sqrt{14}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | $\frac{33}{2}$ | D. | $\frac{33}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com