【題目】已知{an}是各項為正數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,b2+b3=2a3 , a5﹣3b2=7.
(1)求{an}和{bn}的通項公式;
(2)設(shè)cn=anbn , n∈N* , 求數(shù)列{cn}的前n項和為Sn

【答案】
(1)解:設(shè){an}的公比為q,{bn}的公差為d,由題意q>0,

由已知,有 ,

消去d得q4﹣2q2﹣8=0,解得q=2,d=2,

所以{an}的通項公式為 ,{bn}的通項公式為


(2)解:由(1)有 ,設(shè){cn}的前n項和為Sn,

,

兩式相減得 ,

所以


【解析】(1)根據(jù)等比數(shù)列,等差數(shù)列的通項公式,由題意列出等式解出公比q,公差d,即可得出通項公式,(2)由(1)中的通項公式表示出cn,使用錯位相減即可求出Sn.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)a1a2 , …,an是1,2,…,n的一個排列,求證: ·

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>2,求證:loga(a-1)<log(a1)a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱A1B1C1﹣ABC中,AB=AC=AA1 , ,點D是BC的中點.
(I)求證:AD⊥平面BCC1B1;
(II)求證:A1B∥平面ADC1;
(III)求二面角A﹣A1B﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣ +4x﹣3lnx在[t,t+1]上不單調(diào),則t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,關(guān)于x的方程[f(x)]2+mf(x)﹣1=0有三個不同的實數(shù)解,則實數(shù)m的取值范圍是(
A.(﹣∞,e﹣
B.(e﹣ ,+∞)
C.(0,e)
D.(1,e)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為對本公司的160名員工的身體狀況進行調(diào)查,先將員工隨機編號為1,2,3,…,159,160,采用系統(tǒng)抽樣的方法(等間距地抽取,每段抽取一個個體)將抽取的一個樣本.已知抽取的員工中最小的兩個編號為5,21,那么抽取的員工中,最大的編號應(yīng)該是( )
A.141
B.142
C.149
D.150

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等差數(shù)列,其中a10=30,a20=50.
(1)求數(shù)列{an}的通項公式;
(2)若bn=an﹣20,求數(shù)列{bn}的前n項和Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項公式an;
(2)若a3 , a5分別是等差數(shù)列{bn}的第4項和第16項,求數(shù)列{bn}的通項公式及前n項和Sn

查看答案和解析>>

同步練習冊答案