在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P與兩個(gè)定點(diǎn)M(1,0),N(4,0)的距離之比為
(Ⅰ)求動(dòng)點(diǎn)P的軌跡W的方程;
(Ⅱ)若直線l:y=kx+3與曲線W交于A,B兩點(diǎn),在曲線W上是否存在一點(diǎn)Q,使得,若存在,求出此時(shí)直線l的斜率;若不存在,說明理由.
【答案】分析:(Ⅰ)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),再由M和N的坐標(biāo),利用兩點(diǎn)間的距離公式分別表示出|PM|及|PN|,由距離之比為列出關(guān)系式,整理后即可得到動(dòng)點(diǎn)P軌跡W的方程;
(Ⅱ)由第一問得到的W軌跡方程為圓心(0,0),半徑為2的圓,且直線l與圓交于兩個(gè),得到圓心到直線l的距離d小于半徑r,利用點(diǎn)到直線的距離公式列出關(guān)于k的不等式,求出不等式的解集得到k的范圍,假設(shè)存在Q點(diǎn),使得=+,又A和B再圓上,利用由向量加法的平行四邊形法則可知四邊形OAQB為菱形,根據(jù)菱形的對(duì)角線互相平分且垂直,得到OQ與AB互相垂直且平分,可得出原點(diǎn)到直線l的距離等于|OQ|的一半,即為半徑的一半,利用點(diǎn)到直線的距離公式列出關(guān)于k的方程,求出方程的解得到k的值,經(jīng)檢驗(yàn)符合k的范圍,故存在點(diǎn)Q,使得=+,.
解答:解:(Ⅰ)設(shè)點(diǎn)P坐標(biāo)為(x,y),依題意得:=,
又M(1,0),N(4,0),
∴2=
化簡(jiǎn)得:x2+y2=4,
則動(dòng)點(diǎn)P軌跡W方程為x2+y2=4;                       
(Ⅱ)∵直線l:y=kx+3與曲線W交于A,B兩點(diǎn),且W軌跡為圓心為(0,0),半徑r=2的圓,
∴圓心到直線l的距離d=<r=2,即k2,
解得:k>或k<-,
假設(shè)存在點(diǎn)Q點(diǎn),使得=+
由A,B圓上,且=+,
利用向量加法的平行四邊形法則可知四邊形OAQB為菱形,
∴OQ與AB互相垂直且平分,
∴原點(diǎn)O到直線l:y=kx+3的距離為d=|OQ|=1,即=1,
整理得:k2=8,
解得:k=±2,經(jīng)驗(yàn)證滿足條件,
則存在點(diǎn)Q,使得=+
點(diǎn)評(píng):此題考查了直線與圓相交的性質(zhì),動(dòng)點(diǎn)的軌跡方程,圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,直線與圓的位置關(guān)系,菱形的判定與性質(zhì),以及向量在幾何中的運(yùn)用,是一道綜合性較強(qiáng)的試題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案