12.已知x∈R,則“x<1”是“x2<1”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

分析 x2<1,解得-1<x<1.即可判斷出關(guān)系.

解答 解:x2<1,解得-1<x<1.
∴“x<1”是“x2<1”的必要不充分條件.
故選:B.

點評 本題考查了不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,圓錐的高PO=$\sqrt{2}$,底面⊙O的直徑AB=2,C是圓上一點,且∠CAB=30°,D為AC的中點,則點B到平面PAC的距離( 。
A.$\frac{1}{2}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合A={x|-2<x<2},集合B={1,2},則A∩B={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知平面向量$\overrightarrow{a}$=(k,3),$\overrightarrow$=(1,4),若$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)k=-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知隨機變量X服從正態(tài)分布N(1,σ2),若P(X>-2)=0.9,則P(1<X<4)=( 。
A.0.2B.0.3C.0.4D.0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)為偶函數(shù),當x<0時,f(x)=ln(-x)-ax.若直線y=x與曲線y=f(x)至少有兩個交點,則實數(shù)a的取值范圍是(  )
A.$[{-1-\frac{1}{e},1-\frac{1}{e}}]$B.$({-1-\frac{1}{e},-1})∪\left\{{1-\frac{1}{e}}\right\}$
C.$({1-\frac{1}{e},+∞})$D.$({-1-\frac{1}{e},-1})∪[{1-\frac{1}{e},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-ax(a>0),設(shè)$g(x)=f({\frac{2}{a}-x})$.
(1)判斷函數(shù)h(x)=f(x)-g(x)零點的個數(shù),并給出證明;
(2)首項為m的數(shù)列{an}滿足:①an+1+an≠$\frac{2}{a}$;②f(an+1)=g(an).其中0<m<$\frac{1}{a},n∈{N^*}$.求證:對于任意的i,j∈N*,均有ai-aj<$\frac{1}{a}$-m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.有三種卡片分別寫有數(shù)字1,10,100,從上述三種卡片中選取若干張,使得這些卡片之和為m(m為正整數(shù)).考慮不同的選法種數(shù),例如m=11時有兩種選法:“一張卡片寫有1,另一張寫有10”或“11張寫有1的卡片”.
(1)若m=100,直接寫出選法種數(shù);
(2)設(shè)n為正整數(shù),記所選卡片的數(shù)字和為100n的選法種數(shù)為an,當n≥2時,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知等邊△ABC的邊長為2,圓A的半徑為1,PQ為圓A的任意一條直徑.
(1)判斷$\overrightarrow{BP}•\overrightarrow{CQ}-\overrightarrow{AP}•\overrightarrow{CB}$的值是否會隨點P的變化而變化,請說明理由.
(2)求$\overrightarrow{BP}•\overrightarrow{CQ}$的最大值.

查看答案和解析>>

同步練習冊答案