A. | f(x)=1;g(x)=$\frac{x}{x}$ | B. | f(x)=x-2;g(x)=$\frac{{x}^{2}-4}{x+2}$ | ||
C. | f(x)=|x|;g(x)=$\sqrt{{x}^{2}}$ | D. | f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$;g(x)=$\sqrt{{x}^{2}-1}$ |
分析 逐項(xiàng)判斷即可.A項(xiàng)定義域不同;B項(xiàng)定義域不同;C項(xiàng)三要素相同;D項(xiàng)定義域不同.
解答 解:A、函數(shù)f(x)的定義域?yàn)镽,函數(shù)g(x)的定義域?yàn)閧x|x≠0},定義域不同,故不是相同函數(shù);
B、函數(shù)f(x)的定義域?yàn)镽,g(x)的定義域?yàn)閧x|x≠-2},定義域不同,故不是相同函數(shù);
C、因?yàn)?g(x)=\sqrt{{x}^{2}}=|x|=f(x)$,故兩函數(shù)相同;
D、函數(shù)f(x)的定義域?yàn)閧x|x≥1},函數(shù)g(x)的定義域?yàn)閧x|x≤1或x≥1},定義域不同,故不是相同函數(shù).
綜上可得,C項(xiàng)正確.
故選:C.
點(diǎn)評(píng) 本題考查函數(shù)的概念和相等函數(shù)的判斷.兩函數(shù)相同需三要素相同,此為解題關(guān)鍵.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | -1 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ①④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 垂心,外心,內(nèi)心 | B. | 外心,內(nèi)心,垂心 | C. | 內(nèi)心,外心,垂心 | D. | 內(nèi)心,垂心,外心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{sinβ}{PA}$-$\frac{sinβ}{PB}$ | B. | $\frac{sinα}{PB}$-$\frac{sinβ}{PA}$ | C. | $\frac{sinα}{PA}$+$\frac{sinβ}{PB}$ | D. | $\frac{sinα}{PB}$+$\frac{sinβ}{PA}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 已知x,y∈R,如果x2+y2≠0,那么x≠0且y≠0 | |
B. | 已知x,y∈R,如果x2+y2≠0,那么x≠0或y≠0 | |
C. | 已知x,y∈R,如果x≠0或y≠0,那么x2+y2≠0 | |
D. | 已知x,y∈R,如果x≠0且y≠0,那么x2+y2≠0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com