【題目】圖1,平行四邊形中, ,現(xiàn)將沿折起,得到三棱錐(如圖2),且,點為側棱的中點.

(1)求證: 平面

(2)求三棱錐的體積;

(3)在的角平分線上是否存在點,使得平面?若存在,求的長;若不存在,請說明理由.

【答案】(1)見解析;(2);(3).

【解析】試題分析:(Ⅰ)由平面幾何知識先證明,再由線面垂直的判定的定理可得平面,從而得,進而可得平面,最后由由線面垂直的判定的定理可得結論;(Ⅱ)由等積變換可得,進而可得結果;(Ⅱ)取中點,連接并延長至點,使,連接, ,先證四邊形為平行四邊形,則有,利用平面幾何知識可得結果.

試題解析:(Ⅰ)證明:在平行四邊形中,有,又因為為側棱的中點,

所以;

又因為, ,且,所以平面.

又因為平面,所以

因為,

所以平面

又因為平面,

所以平面平面

(Ⅱ)解:因為, 平面,所以是三棱錐的高,

,

又因為, , ,所以

所以有 .

(Ⅲ)解:取中點,連接并延長至點,使,連接, , .

因為,所以射線是角的角分線.

又因為點是的中點,所以,

因為平面平面,

所以∥平面.

因為、互相平分,

故四邊形為平行四邊形,有.

又因為,所以有,

又因為,故.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點Px0,y0)(x0)在橢圓Cab0)上,若點M為橢圓C的右頂點,且POPM O為坐標原點),則橢圓C的離心率e的取值范圍是

A. 0, B. (0,1 C. ,1 D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的奇函數(shù)滿足, 為數(shù)列的前項和,且,則__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下數(shù)據(jù)資料:

日期

晝夜溫差

就診人數(shù)

該興趣小組確定的研究方案是:先從這組(每個有序數(shù)對叫作一組)數(shù)據(jù)中隨機選取組作為檢驗數(shù)據(jù),用剩下的組數(shù)據(jù)求線性回歸方程.

(Ⅰ)求選取的組數(shù)據(jù)恰好來自相鄰兩個月的概率;

(Ⅱ)若選取的是月和月的兩組數(shù)據(jù),請根據(jù)月份的數(shù)據(jù),求出關于的線性回歸方程;

(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問(Ⅱ)中所得到的線性回歸方程是否是理想的?

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當時,求的單調區(qū)間;

(2)當時,若對任意,都有成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解高校學生平均每天使用手機的時間長短是否與性別有關,某調查小組隨機抽取了25 名男生、10名女生進行為期一周的跟蹤調查,調查結果如表所示:

平均每天使用手機小時

平均每天使用手機小時

合計

男生

15

10

25

女生

3

7

10

合計

18

17

35

(I) 根據(jù)列聯(lián)表判斷,是否有90%的把握認為學生使用手機的時間長短與性別有關;

(II)在參與調查的平均每天使用手機不超過3小時的10名男生中,有6人使用國產(chǎn)手機,從這10名男生中任意選取3人,求這3人中使用國產(chǎn)手機的人數(shù)的分布列和數(shù)學期望.

0.400

0.250

0.150

0.100

0.050

0.025

0.708

1.323

2.072

2.706

3.841

5.024

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用紅、黃、藍三種不同顏色給圖中的個矩形隨機涂色,每個矩形只涂一種顏色,則個矩形顏色都相同的概率是________,個矩形顏色都不同的概率是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在最強大腦的舞臺上,為了與國際X戰(zhàn)隊PK,假設某季Dr.魏要從三名擅長速算的選手A1,A2,A3,三名擅長數(shù)獨的選手B1,B2,B3,兩名擅長魔方的選手C1,C2中各選一名組成中國戰(zhàn)隊.假定兩名魔方選手中更擅長盲擰的選手C1已確定入選,而擅長速算與數(shù)獨的選手入選的可能性相等.

()A1被選中的概率;

()A1,B1不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市計劃銷售某種食品,現(xiàn)邀甲、乙兩個商家進場試銷5天.兩個商家提供的返利方案如下:甲商家每天固定返利60元,且每賣出一件食品商家再返利2元;乙商家無固定返利,賣出30件以內(含30件)的食品,每件食品商家返利4元,超出30件的部分每件返利6元.經(jīng)統(tǒng)計,兩個商家的試銷情況莖葉圖如下:

9

8

9

2

8

8

2

2

3

2

1

1

(1)現(xiàn)從甲商家試銷的5天中抽取兩天,求這兩天的銷售量都小于30的概率;

(2)超市擬在甲、乙兩個商家中選擇一家長期銷售,如果僅從日平均返利額的角度考慮,請利用所學的統(tǒng)計學知識為超市作出選擇,并說明理由.

查看答案和解析>>

同步練習冊答案