y=|ax-1|和y=(a-1)x沒有交點,則a的取值范圍是
 
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)的零點,需要分類討論,(1)當a=1時,(2)當a=0時,(3)當a>0,且a≠1時,(4)當a<0時,分別對每一種情況分析即可
解答: 解:∵y1=|ax-1|和y2=(a-1)x沒有交點,
∴y1的零點為
1
a
,y2的零點為0,交點情況討論如下
(1)當a=1時,y2的圖象為x軸,如下圖所示顯然不合題意,舍去,

(2)當a=0時,解得x=-1,兩圖象有公共點,如下圖所示顯然不合題意,舍去,

(3)當a>0,且a≠1時,要使兩圖象沒有交點只需要滿足,
a-1≥-a,且a-1<0,解得
1
2
≤a<1
如圖所示

(4)當a<0時,由圖可知,兩圖象不可能沒有交點,舍去

綜上所述:a的取值范圍是[
1
2
,1),
故答案為:[
1
2
,1),
點評:本題主要考查了函數(shù)的交點問題,需要分類討論,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+alnx,在x=1處的切線與直線x+2y=0垂直,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合M={(x,y)|x=
1-y2
},N={(x,y)|y=x+m},若M∩N的子集恰有4個,則M的取值范圍是( 。
A、[-
2
2
]
B、[1,
2
C、[-1,
2
]
D、(-
2
,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

意大利數(shù)學家斐波那契在1202年出版的一書里提出了這樣一個問題:1對兔子飼養(yǎng)到第二個月進入成年,第三個月生1對小兔,以后每個月生1對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生1對小兔,以后每月生1對小兔,問這樣下去到年底應有多少對兔子?
(1)寫出各個月中兔子的對數(shù),即斐波那契數(shù)列(前12項),總結(jié)出該數(shù)列前后項之間的關(guān)系.
(2)畫出計算各項數(shù)值(前12項)問題的程序框圖(要求輸出各項),并編寫相應的程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2+ax)•ex,其中e是自然對數(shù)的底數(shù),a∈R.
(Ⅰ)討論f(x)在其定義域上的單調(diào)性;
(Ⅱ)當x∈[0,+∞)時,求f(x)取得最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
2ax3
1+|x|
(a>0,x∈R),已知區(qū)間A=[
m2
2
,
n2
2
](m<n),集合B={f(x)|m≤x≤n},則使得A=B成立的實數(shù)a的取值范圍是(  )
A、a>
1
4
B、a≤
1
4
C、0<a≤
5
4
D、0<a<
5
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線T:x2-
y2
4
=1
(1)過點P(1,-1)能否作雙曲線T的弦AB,使得點P為弦AB的中點?
(2)我們稱橫、縱坐標都為整數(shù)的點為格點,試求出所有格點M的集合,使得過M任意弦,都不以M為中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,拋物線C1:y2=4x和圓C2:(x-1)2+y2=1,直線l經(jīng)過C1的焦點F,依次交C1,C2于A,B,C,D四點,則
AB
CD
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知長方體A1B1C1D1-ABCD的高為
2
,兩個底面均為邊長1的正方形.
(1)求證:BD∥平面A1B1C1D1;
(2)求異面直線A1C與AD所成角的大。
(3)求二面角A1-BD-A的平面角的正弦值.

查看答案和解析>>

同步練習冊答案