如圖,在平行四邊形OABC中,點O是原點,點A和點C的坐標(biāo)分別是(3,0)、(1,3),點D是線段AB上的動點.
(1)求AB所在直線的一般式方程;
(2)當(dāng)D在線段AB上運動時,求線段CD的中點M的軌跡方程.
(1)∵ABOC,∴AD所在直線的斜率為:KAB=KOC=3.
∴AB所在直線方程是y-0=3(x-3),即3x-y-9=0.
(2):設(shè)點M的坐標(biāo)是(x,y),點D的坐標(biāo)是(x0,y0),
由平行四邊形的性質(zhì)得點B的坐標(biāo)是(4,6),
∵M(jìn)是線段CD的中點,∴x=
x0+1
2
,y=
y0+3
2

于是有x0=2x-1,y0=2y-3,
∵點D在線段AB上運動,
∴3x0-y0-9=0,(3≤x0≤4),
∴3(2x-1)-(2y-3)-9=0
即6x-2y-9=0,(2≤x≤
5
2
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓O1:(x-1)2+y2=1和圓O2:x2+(y-3)2=9的位置關(guān)系是( 。
A.相交B.相切C.外離D.內(nèi)含

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知曲線x2+y2-2ax+2(a-2)y+2=0,(其中a∈R),當(dāng)a=1時,曲線表示的軌跡是______.當(dāng)a∈R,且a≠1時,上述曲線系恒過定點______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程(x+y-1)
x-y-3
=0
表示的曲線是(  )
A.兩條互相垂直的直線B.兩條射線
C.一條直線和一條射線D.一個點(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三點A(0,4)、B(0,-4)、C(7,-3),△ABC外接圓為圓M(圓心M).
(1)求圓M的方程;
(2)若N(-7,0),R在圓M上運動,平面上一動點P滿足
RP
=4
PN
,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一動圓與圓O1:(x+2)2+y2=49內(nèi)切,與圓O2:(x-2)2+y2=1的外切,求動圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

到空間兩點A(-1,1,0),B(2,-1,-1)等距離的點的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動圓經(jīng)過點A(3,0),且和直線x+3=0相切,
(1)求動圓圓心的軌跡C的方程;
(2)已知曲線C上一點M,且|AM|=5,求M點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若一動點M與定直線l:x=
16
5
及定點A(5,0)的距離比是4:5.
(1)求動點M的軌跡C的方程;
(2)設(shè)所求軌跡C上有點P與兩定點A和B(-5,0)的連線互相垂直,求|PA|•|PB|的值.

查看答案和解析>>

同步練習(xí)冊答案