【題目】據(jù)統(tǒng)計(jì),2016年“雙十”天貓總成交金額突破1207億元.某購物網(wǎng)站為優(yōu)化營銷策略,對11月11日當(dāng)天在該網(wǎng)站進(jìn)行網(wǎng)購消費(fèi)且消費(fèi)金額不超過1000元的1000名網(wǎng)購者(其中有女性800名,男性200名)進(jìn)行抽樣分析.采用根據(jù)性別分層抽樣的方法從這1000名網(wǎng)購者中抽取100名進(jìn)行分析,得到下表:(消費(fèi)金額單位:元)

女性消費(fèi)情況:

消費(fèi)金額

人數(shù)

5

10

15

47

男性消費(fèi)情況:

消費(fèi)金額

人數(shù)

2

3

10

2

(1)計(jì)算,的值;在抽出的100名且消費(fèi)金額在(單位:元)的網(wǎng)購者中隨機(jī)選出兩名發(fā)放網(wǎng)購紅包,求選出的兩名網(wǎng)購者恰好是一男一女的概率;

(2)若消費(fèi)金額不低于600元的網(wǎng)購者為“網(wǎng)購達(dá)人”,低于600元的網(wǎng)購者為“非網(wǎng)購達(dá)人”,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為“是否為‘網(wǎng)購達(dá)人’與性別有關(guān)?”

女性

男性

總計(jì)

網(wǎng)購達(dá)人

非網(wǎng)購達(dá)人

總計(jì)

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

,其中

【答案】(1)(2)能

【解析】試題分析:(1)根據(jù)分層抽樣方法求出的值,利用列舉法計(jì)算基本事件數(shù),求出對應(yīng)的概率;(2)列出2×2列聯(lián)表,計(jì)算觀測值,對照表中數(shù)據(jù),判斷結(jié)論是否成立即可.

(1)依題意,女性應(yīng)抽取80名,男性應(yīng)抽取20名,

所以,

設(shè)抽出的100名且消費(fèi)金額在(單位:元)的網(wǎng)購者中有三位女性記為,;兩位男性記為,,從5人中任選2人的基本事件有:,,,,,,,共10個(gè).

設(shè)“選出的兩名網(wǎng)購者恰好是一男一女”為事件,事件包含的基本事件有:

,,,,共6件,∴

(2)列聯(lián)表如表所示:

女性

男性

總計(jì)

網(wǎng)購達(dá)人

50

5

55

非網(wǎng)購達(dá)人

30

15

45

總計(jì)

80

20

100

,

因?yàn)?/span>,所以能在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為“是否為‘網(wǎng)購達(dá)人’”與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的程序框圖運(yùn)行程序后,輸出的結(jié)果是31,則判斷框中的整數(shù)H=(

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)為定義在區(qū)間(﹣2,2)的奇函數(shù),它在區(qū)間(0,2)上的圖象為如圖所示的一條線段,則不等式f(x)﹣f(﹣x)>x的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P在△ABC內(nèi),AB=CP=2,BC=3,∠P+∠B=π,記∠B=α.

(1)試用α表示AP的長;
(2)求四邊形ABCP的面積的最大值,并寫出此時(shí)α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,平面ABC⊥平面BCDE,BC∥DE, ,BE=CD=2,AB⊥BC,M,N分別為DE,AD中點(diǎn).

(1)證明:平面MNC⊥平面BCDE;
(2)若EC⊥CD,點(diǎn)P為棱AD的三等分點(diǎn)(近A),平面PMC與平面ABC所成銳二面角的余弦值為 ,求棱AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC

(1)求證:A,B,C,P四點(diǎn)共圓;
(2)若∠CAD= ,AB=1,求四邊形ABCP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga ,(a>0且a≠1).
(1)判斷f(x)的奇偶性,并加以證明;
(2)是否存在實(shí)數(shù)m使得f(x+2)+f(m﹣x)為常數(shù)?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= 的定義域是(
A.[﹣ ,﹣1)∪(1, ]
B.(﹣ ,﹣1)∪(1, )??
C.[﹣2,﹣1)∪(1,2]
D.(﹣2,﹣1)∪(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C: (ab>0)的離心率為,其左焦點(diǎn)到點(diǎn)的距離為.不過原點(diǎn)O的直線與C相交于AB兩點(diǎn),且線段AB被直線OP平分.

(1)求橢圓C的方程;

(2)求ABP的面積取最大時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案