【題目】已知函數(shù)f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)在x= 處取得最大值,則函數(shù)y=f(x+ )是( )
A.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn)( ,0)對(duì)稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn)( ,0)對(duì)稱
D.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱
【答案】B
【解析】解:將已知函數(shù)變形f(x)=asinx﹣bcosx= sin(x﹣φ),其中tanφ= ,
又f(x)=asinx﹣bcosx在x= 處取得最大值,
∴ ﹣φ=2kπ+ (k∈Z)得φ=﹣ ﹣2kπ(k∈Z),
∴f(x)= sin(x+ ),
∴函數(shù)y=f(x+ )= sin(x+ )= cosx,
∴函數(shù)是偶函數(shù)且它的圖象關(guān)于點(diǎn)( ,0)對(duì)稱.
故選:B.
將已知函數(shù)變形f(x)=asinx﹣bcosx= sin(x﹣φ),根據(jù)f(x)=asinx﹣bcosx在x= 處取得最大值,求出φ的值,化簡(jiǎn)函數(shù),即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓A:(x+2)2+y2=1,圓B:(x﹣2)2+y2=49,動(dòng)圓P與圓A,圓B均相切.
(1)求動(dòng)圓圓心P的軌跡方程;
(2)已知點(diǎn)N(2, ),作射線AN,與“P點(diǎn) 軌跡”交于另一點(diǎn)M,求△MNB的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)F(0,1),點(diǎn)P在x軸上,點(diǎn)Q在y軸上, =2 , ⊥ ,當(dāng)點(diǎn)P在x軸上運(yùn)動(dòng)時(shí),點(diǎn)N的軌跡為曲線C.
(1)求曲線C的方程;
(2)過(guò)點(diǎn)F的直線l交曲線C于A,B兩點(diǎn),且曲線C在A,B兩點(diǎn)處的切線相交于點(diǎn)M,若△MAB的三邊成等差數(shù)列,求此時(shí)點(diǎn)M到直線AB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:9x2+y2=m2(m>0),直線l不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過(guò)點(diǎn)( ,m),延長(zhǎng)線段OM與C交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)l的斜率;若不能,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an},公差為2,的前n項(xiàng)和為Sn , 且a1 , S2 , S4成等比數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的長(zhǎng)方體中,AB=2 ,AD= , = ,E、F分別為 的中點(diǎn),則異面直線DE、BF所成角的大小為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的單調(diào)函數(shù)f(x)滿足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零點(diǎn),則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:x2﹣4ax+3a2<0(其中a>0,x∈R),命題q:﹣x2+5x﹣6≥0,x∈R.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=1﹣ (a>0且a≠1)是定義在R上的奇函數(shù). (Ⅰ)求a的值;
(Ⅱ)若關(guān)于x的方程|f(x)(2x+1)|=m有1個(gè)實(shí)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com