12、設(shè)集合U={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么點(diǎn)P(2,3)∈A∩(CUB)的充要條件是( 。
分析:由P(2,3)∈A∩(CUB)則點(diǎn)P既適合2x-y+m>0,也適合x+y-n>0,從而求得結(jié)果.
解答:解:CUB={(x,y)|x+y-n>0}
∵P(2,3)∈A∩(CUB)
∴2×2-3+m>0,2+3-n>0
∴m>-1,n<5
故選A
點(diǎn)評(píng):本題主要考查元素與集合的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2007年高考數(shù)學(xué)第一輪復(fù)習(xí)、集合與簡(jiǎn)易邏輯 題型:013

設(shè)集合U={(x,y)|xR,yR},A={(xy)|2xym>0},B={(x,y)|xyn≤0},那么點(diǎn)P(2,3)∈A∩(B)的充要條件是

[  ]
A.

m>-1,n<5

B.

m<-1,n<5

C.

m>-1,n>5

D.

m<-1,n>5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合U={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},

那么點(diǎn)P(2,3)∈A∩(B)的充要條件是(    )

A.m>-1,n<5       B.m<-1,n<5            C.m>-1,n>5             D.m<-1,n>5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U={(x,y)|x∈R,y∈R},集合M={(x,y)|=1},N={(x,y)|y≠x+1}.那么(M∪N)等于(    )

A.              B.{(2,3)}           C.(2,3)        D.{(x,y)|y=x+1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合U={(x,y)|xR,yR},A={(x,y)|2xy+m>0},B={(x,y)|x+yn≤0},那么點(diǎn)P(2,3)∈A∩(UB)的充要條件是………( 。

A.m>-1,n<5                                    

B.m<-1,n<5

C.m>-1,n>5                                    

D.m<-1,n>5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合U={(x,y)|x∈R,y∈R},A={(x,y)|2xy+m>0},B={(x,y)|x+yn≤0},那么點(diǎn)P(2,3)∈A∩(UB)的充要條件是……………( 。

A.m>-1,n<5                                    

B.m<-1,n<5

C.m>-1,n>5                                    

D.m<-1,n>5

查看答案和解析>>

同步練習(xí)冊(cè)答案