【題目】已知數(shù)列的前項(xiàng)和為,且滿足:

(1)證明:是等比數(shù)列,并求數(shù)列的通項(xiàng)公式.

(2)設(shè),若數(shù)列是等差數(shù)列,求實(shí)數(shù)的值;

(3)在(2)的條件下,設(shè) 記數(shù)列的前項(xiàng)和為,若對(duì)任意的存在實(shí)數(shù),使得,求實(shí)數(shù)的最大值.

【答案】1 證明過(guò)程見解析 (2) (3)

【解析】

(1)由,再得出,兩式作差,得出,,再分奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別求通項(xiàng)公式即可得解;

(2)由等差數(shù)列的等差中項(xiàng)可得恒成立,可得,解得;

(3)由已知有,由裂項(xiàng)求和法求數(shù)列前項(xiàng)和得,由分離變量最值法可得,運(yùn)算即可得解.

解:(1)因?yàn)?/span>,①

所以,②

②-①得:,

由易得,即,

,

即數(shù)列的奇數(shù)項(xiàng)是以為首項(xiàng),4為公比的等比數(shù)列,偶數(shù)項(xiàng)是以為首項(xiàng),4為公比的等比數(shù)列,

當(dāng)為奇數(shù)時(shí),,

當(dāng)為偶數(shù)時(shí),,

綜上可得,

是等比數(shù)列,且數(shù)列的通項(xiàng)公式.

(2)因?yàn)?/span>,

所以,

因?yàn)閿?shù)列是等差數(shù)列,

所以恒成立,

即有恒成立,

,

解得;

(3)因?yàn)?/span>=

,

又對(duì)任意的存在實(shí)數(shù),使得,

即對(duì)任意的 恒成立,

又當(dāng)時(shí),取最小值3,時(shí),,

,

故實(shí)數(shù)的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校為調(diào)查學(xué)生喜歡“應(yīng)用統(tǒng)計(jì)”課程是否與性別有關(guān),隨機(jī)抽取了選修課程的60名學(xué)生,得到數(shù)據(jù)如下表:

喜歡統(tǒng)計(jì)課程

不喜歡統(tǒng)計(jì)課程

合計(jì)

男生

20

10

30

女生

10

20

30

合計(jì)

30

30

60

(1)判斷是否有99.5%的把握認(rèn)為喜歡“應(yīng)用統(tǒng)計(jì)”課程與性別有關(guān)?

(2)用分層抽樣的方法從喜歡統(tǒng)計(jì)課程的學(xué)生中抽取6名學(xué)生作進(jìn)一步調(diào)查,將這6名學(xué)生作為一個(gè)樣本,從中任選3人,求恰有2個(gè)男生和1個(gè)女生的概率.

下面的臨界值表供參考:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信運(yùn)動(dòng)”是手機(jī)推出的多款健康運(yùn)動(dòng)軟件中的一款,某學(xué)校140名老師均在微信好友群中參與了“微信運(yùn)動(dòng)”,對(duì)運(yùn)動(dòng)10000步或以上的老師授予“運(yùn)動(dòng)達(dá)人”稱號(hào),低于10000步稱為“參與者”,為了解老師們運(yùn)動(dòng)情況,選取了老師們?cè)?月28日的運(yùn)動(dòng)數(shù)據(jù)進(jìn)行分析,統(tǒng)計(jì)結(jié)果如下:

運(yùn)動(dòng)達(dá)人

參與者

合計(jì)

男教師

60

20

80

女教師

40

20

60

合計(jì)

100

40

140

(Ⅰ)根據(jù)上表說(shuō)明,能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下認(rèn)為獲得“運(yùn)動(dòng)達(dá)人”稱號(hào)與性別有關(guān)?

(Ⅱ)從具有“運(yùn)動(dòng)達(dá)人”稱號(hào)的教師中,采用按性別分層抽樣的方法選取10人參加全國(guó)第四屆“萬(wàn)步有約”全國(guó)健走激勵(lì)大賽某賽區(qū)的活動(dòng),若從選取的10人中隨機(jī)抽取3人作為代表參加開幕式,設(shè)抽取的3人中女教師人數(shù)為,寫出的分布列并求出數(shù)學(xué)期望.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4

1)求橢圓的方程;

2)已知直線與橢圓交于兩點(diǎn),試問(wèn),是否存在軸上的點(diǎn),使得對(duì)任意的,為定值,若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱中,是棱的中點(diǎn).

1)證明:直線平面;

2)若,,證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某手機(jī)企業(yè)為確定下一年度投入某種產(chǎn)品的研發(fā)費(fèi)用,統(tǒng)計(jì)了近年投入的年研發(fā)費(fèi)用千萬(wàn)元與年銷售量千萬(wàn)件的數(shù)據(jù),得到散點(diǎn)圖1,對(duì)數(shù)據(jù)作出如下處理:令,得到相關(guān)統(tǒng)計(jì)量的值如圖2

1)利用散點(diǎn)圖判斷哪一個(gè)更適合作為年研發(fā)費(fèi)用和年銷售量的回歸類型(不必說(shuō)明理由),并根據(jù)數(shù)據(jù),求出的回歸方程;

2)已知企業(yè)年利潤(rùn)千萬(wàn)元與的關(guān)系式為(其中為自然對(duì)數(shù)的底數(shù)),根據(jù)(1)的結(jié)果,要使得該企業(yè)下一年的年利潤(rùn)最大,預(yù)計(jì)下一年應(yīng)投入多少研發(fā)費(fèi)用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知梯形中,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面;

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).

1)設(shè)直線,的斜率分別為,求證:常數(shù);

2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo);

②當(dāng)的內(nèi)切圓的面積為時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國(guó)申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:

支持

不支持

合計(jì)

男性市民

女性市民

合計(jì)

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)利用(1)完成的表格數(shù)據(jù)回答下列問(wèn)題:

(i)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);

(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機(jī)抽取人,求至多有位老師的概率.

附:,其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案