18.已知i為虛數(shù)單位,a∈R,若(a+1)(a-1+i)是純虛數(shù),則a的值為( 。
A.-1或1B.1C.-1D.3

分析 利用復(fù)數(shù)的運(yùn)算法則和純虛數(shù)的定義即可得出.

解答 解:∵(a+1)(a-1+i)=(a2-1)+(a+1)i是純虛數(shù),
∴a2-1=0且a+1≠0,
∴a=1,
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則和純虛數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U=R,集合$A=\left\{{x|{2^x}>\frac{1}{2}}\right\},B=\left\{{x|{{log}_3}x<1}\right\}$,則A∩(∁UB)=( 。
A.(-1,+∞)B.[3,+∞)C.(-1,0)∪(3,+∞)D.(-1,0]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.從六個(gè)數(shù)1,3,4,6,7,9中任取2個(gè)數(shù),則這兩個(gè)數(shù)的平均數(shù)恰好是5的概率為( 。
A.$\frac{1}{20}$B.$\frac{1}{15}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某人打算制定一個(gè)長期儲(chǔ)蓄計(jì)劃,每年年初存款2萬元,連續(xù)儲(chǔ)蓄12年.由于資金原因,從第7年年初開始,變更為每年年初存款1萬元.若存款利率為每年2%,且上一年年末的本息和共同作為下一年年初的本金,則第13年年初時(shí)的本息和約為( 。┤f元(結(jié)果精確到0.1).(參考數(shù)據(jù):1.026≈1.13,1.0212≈1.27)
A.20.09萬元B.20.50萬元C.20.91萬元D.21.33萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,直線l1的方程為y=$\sqrt{3}$x,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=1+\sqrt{3}cosφ\\ y=\sqrt{3}sinφ\end{array}$(φ是參數(shù),0≤φ≤π).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)分別寫出直線l1與曲線C的極坐標(biāo)方程;
(2)若直線${l_2}:2ρsin(θ+\frac{π}{3})+3\sqrt{3}$=0,直線l1與曲線C的交點(diǎn)為A,直線l1與l2的交點(diǎn)為B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x≥y}\\{y≥4x-3}\\{x≥0,y≥0}\end{array}\right.$,若目標(biāo)函數(shù)2z=2x+ny(n>0),z的最大值為2,則y=tan(nx+$\frac{π}{6}$)的圖象向右平移$\frac{π}{6}$后的表達(dá)式為( 。
A.y=tan(2x+$\frac{π}{6}$)B.y=tan(x-$\frac{π}{6}$)C.y=tan(2x-$\frac{π}{6}$)D.y=tan2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.24B.48C.54D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.《九章算術(shù)》中“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積稱等比數(shù)列,上面3節(jié)的容積共2升,下面3節(jié)的容積共128升,則第5節(jié)的容積為(  )
A.3升B.$\frac{31}{6}$升C.4升D.$\frac{32}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.E為正四面體D-ABC棱AD的中點(diǎn),平面α過點(diǎn)A,且α∥平面ECB,α∩平面ABC=m,α∩平面ACD=n,則m、n所成角的余弦值為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案