13.方程$sin\frac{x}{2}-cos\frac{x}{2}=1$的解集為{x|$x=kπ+\frac{π}{4}$或$x=kπ+\frac{π}{2}$,k∈Z}.

分析 先利用兩角和公式對$sin\frac{x}{2}-cos\frac{x}{2}$化簡整理,進(jìn)而根據(jù)正弦函數(shù)的性質(zhì)可求得x的解集.

解答 解:由$sin\frac{x}{2}-cos\frac{x}{2}=1$,
得$sin\frac{x}{2}-cos\frac{x}{2}$=$\sqrt{2}(\frac{\sqrt{2}}{2}sin\frac{x}{2}-\frac{\sqrt{2}}{2}cos\frac{x}{2})=\sqrt{2}sin(\frac{x}{2}$$-\frac{π}{4})$=1,
∴$sin(\frac{x}{2}-\frac{π}{4})=\frac{\sqrt{2}}{2}$.
∴$x=kπ+\frac{π}{4}$或$x=kπ+\frac{π}{2}$,k∈Z.
故答案為:{x|$x=kπ+\frac{π}{4}$或$x=kπ+\frac{π}{2}$,k∈Z}.

點評 本題主要考查了終邊相同的角、正弦函數(shù)的基本性質(zhì),考查了學(xué)生對正弦函數(shù)基礎(chǔ)知識的理解和運用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=sin2x的圖象向右平移$\frac{π}{6}$個單位后,得到函數(shù)y=g(x)的圖象.下列關(guān)于函數(shù)y=g(x)的命題:
①g{x}的圖象關(guān)于點($\frac{π}{6}$,0)中心對稱;
②g(x)的圖象關(guān)于x=$\frac{π}{6}$軸對稱;
③g(x)在區(qū)間[$\frac{π}{12}$,$\frac{5π}{12}$]上單調(diào)遞增.
其中真命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)x∈(0,1)時,f(x)=sinπx,則$f({-\frac{5}{2}})+f(1)+f(2)$=( 。
A.0B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓C與y軸相切,圓心C在直線l1:x-3y=0上,且截直線l2:x-y=0的弦長為2$\sqrt{7}$,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,半圓O的直徑為2,A為直徑延長線上的一點,OA=2,B為半圓上任意一點,以AB為一邊作等邊三角形ABC.當(dāng)四邊形OACB面積最大時,∠AOB=150°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若z=$\frac{\sqrt{2}}{1-i}$,那么z100的值為( 。
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.以下判斷正確的是(  )
A.命題p是真命題時,命題“p∧q”一定是真命題
B.命題“p∧q”是真命題時,命題p一定是真命題
C.命題“p∧q”是假命題時,命題p一定是假命題
D.命題p是假命題時,命題“p∧q”不一定是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若復(fù)數(shù)z滿足$\frac{\overline z}{1-i}={i^{2017}}$,其中i為虛數(shù)單位,則z=1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.$\frac{cos(-585°)}{tan495°+sin(-690°)}$的值是$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案