9.把函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象向右平移$\frac{π}{6}$個單位后,所得函數(shù)圖象的一條對稱軸為( 。
A.x=0B.x=$\frac{π}{6}$C.x=-$\frac{π}{12}$D.x=$\frac{π}{4}$

分析 由題意根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對稱性,得出結(jié)論.

解答 解:把函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象向右平移$\frac{π}{6}$個單位后,可得y=sin(2x-$\frac{π}{2}$)=-cos2x 的圖象,
再令2x=kπ,求得x=$\frac{kπ}{2}$,k∈Z,函數(shù)所得函數(shù)圖象的一條對稱軸為x=0,
故選:A.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=ax3-bx+1,若f(-1)=3,則f(1)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),M,N兩點(diǎn)在雙曲線上,且MN∥F1F2,|F1F2|=4|MN|,線段F1N交雙曲線C于點(diǎn)Q,且|F1Q|=|QN|,則該雙曲線的離心率為 ( 。
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.給出下列演繹推理:“整數(shù)是有理數(shù),___,所以-3是有理數(shù)”,如果這個推理是正確的,則其中橫線部分應(yīng)填寫-3是整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x+1)是偶函數(shù),且滿足f(x+1)=$\frac{1}{f(x)}$,當(dāng)2≥x2>x1≥1時,[f(x2)-f(x1)](x2-x1)>0恒成立,設(shè)a=f(-2016),b=f(2015),c=f(π),則a,b,c的大小關(guān)系為a>c>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知等差數(shù)列{an}中,a1=$\frac{3}{2},d=-\frac{1}{2},{S_n}$=-15,求n和an;
(2)已知等比數(shù)列{an}中,q=2,an=96,Sn=189,求a1和n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知二次函數(shù)f(x)的圖象過點(diǎn)(0,4),對任意x滿足f(2-x)=f(x),且有最小值為1.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[3a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[-1,3]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.A={x|-2<x≤3},B={x|x<-1或x>4},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$離心率為$\frac{\sqrt{2}}{2}$,右焦點(diǎn)F到直線x=$\frac{{a}^{2}}{c}$的距離為1.
(1)求橢圓C的方程;
(2)過點(diǎn)F的直線l(與x軸不重合)與橢圓C交于A,B兩點(diǎn),線段AB中點(diǎn)為D,過點(diǎn)O,D的直線交橢圓于M、N兩點(diǎn)(O為坐標(biāo)原點(diǎn)),求四邊形AMBN面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案