某人定制了一批地磚.每塊地磚(如圖1所示)是邊長為0.4米的正方形ABCD,點(diǎn)E、F分別在邊BC和CD上,且CE=CF,△CFE、△ABE和四邊形AEFD均由單一材料制成,制成△CFE、△ABE和四邊形AEFD的三種材料的每平方米價(jià)格之比依次為3:2:1.若將此種地磚按圖2所示的形式鋪設(shè),能使中間的深色陰影部分成四邊形EFGH.問E、F在什么位置時(shí),定制這批地磚所需的材料費(fèi)用最?
設(shè)CE=x,則BE=0.4-x,每塊地磚的費(fèi)用為W,制成△CFE、△ABE和四邊形AEFD三種材料的每平方米價(jià)格依次為3a、2a、a(元),
則W=
1
2
x2•3a+
1
2
×0.4×(0.4-x)×2a
+[0.42-
1
2
x2-
1
2
×0.4×(0.4-x)]a
=a(x2-0.2x+0.24)=a[(x-0.1)2+0.23](0<x<0.4).
由a>0,當(dāng)x=0.1時(shí),W有最小值,即總費(fèi)用最省.
答:當(dāng)E、F在距點(diǎn)C為0.1米時(shí),總費(fèi)用最。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將正整數(shù)12分解成兩個(gè)正整數(shù)的乘積有:1×12,2×6,3×4三種,其中3×4是這三種分解中兩數(shù)差的絕對值最小的,我們稱3×4為12的最佳分解,當(dāng)p×q(p≤q且p、q∈N*)是正整數(shù)n的最佳分解時(shí),我們規(guī)定函數(shù)f(n)=
p
q
,例如f(12)=
3
4
,關(guān)于函數(shù)f(n)有下列敘述:
①f(1)=
1
7

②f(24)=
3
8

③f(28)=
4
7

④f(144)=
9
16

其中正確的序號為______(填入所有正確的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)與g(x)的定義域均為非負(fù)實(shí)數(shù)集,對任意x≥0,規(guī)定f(x)*g(x)=minf(x),g(x),若f(x)=3-x,g(x)=
2x+5
,則f(x)*g(x)的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司試銷一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價(jià)-成本總價(jià))為S元.試問銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤?最大毛利潤是多少?此時(shí)的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)=(2k-1)x-4在(-∞,+∞)是單調(diào)遞減函數(shù),則k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=4x2-4ax+a2-2a+2在區(qū)間[0,2]上有最小值3,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)f(x)=
sin(
π
2
x+
π
4
)
(x≤2008)
f(x-5)(x>2008)
,則f(2007)+f(2008)+f(2009)+f(2010)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5],
(1)當(dāng)a=1時(shí),求f(x)的最大值和最小值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=
2x,(x≤0)
f(x-3)(x>0)
,則f(5)=( 。
A.32B.16C.
1
2
D.
1
32

查看答案和解析>>

同步練習(xí)冊答案