(12分)已知球的兩個(gè)平行截面的面積分別是5π和8π,它們位于球心的同一側(cè),且相距為1,求球的體積。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,在平面內(nèi),ABCD的菱形,都是正方形。將兩個(gè)正方形分別沿AD,CD折起,使重合于點(diǎn)D1。設(shè)直線l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè),設(shè)(圖2)。

(1)設(shè)二面角E – AC – D1的大小為q,若,求的取值范圍;
(2)在線段上是否存在點(diǎn),使平面平面,若存在,求出所成的比;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)
如圖,在六面體中,平面∥平面,
⊥平面,,,
.且,
(1)求證: ∥平面
(2)求二面角的余弦值;
(3) 求五面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
如圖6所示,等腰三角形△ABC的底邊AB=,高CD=3.點(diǎn)E是線段BD上異于B、D的動(dòng)點(diǎn).點(diǎn)F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.
記BE=x,V(x)表示四棱錐P-ACFE的體積。
(1)求V(x)的表達(dá)式;
(2)當(dāng)x為何值時(shí),V(x)取得最大值?
(3)當(dāng)V(x)取得最大值時(shí),求異面直線
AC與PF所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)
如圖為正三角形,EC平面ABC,BDCE,且CE=CA=2BD=a,M是EA的中點(diǎn).(1)求證:(1) DM平面ABC;(2)CMAD;(3)求這個(gè)多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如下圖(2),建造一個(gè)容積為,深為,寬為的長(zhǎng)方體無(wú)蓋水池,如果池底的造價(jià)為,池壁的造價(jià)為,求水池的總造價(jià)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
一個(gè)多面體的直觀圖和三視圖如圖所示
(Ⅰ) 求證:;
(Ⅱ) 若上一點(diǎn),且,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

垂直于同一條直線的兩條直線一定   ( )

A.平行 B.相交 C.異面 D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

以下說(shuō)法中,正確的個(gè)數(shù)是( )
①平面內(nèi)有一條直線和平面平行,那么這兩個(gè)平面平行
②平面內(nèi)有兩條直線和平面平行,那么這兩個(gè)平面平行
③平面內(nèi)有無(wú)數(shù)條直線和平面平行,那么這兩個(gè)平面平行
④平面內(nèi)任意一條直線和平面都無(wú)公共點(diǎn),那么這兩個(gè)平面平行

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案