已知對(duì)于任意非零實(shí)數(shù)m,不等式|2m1||1m|≥|m|(|x1||2x3|)恒成立,則實(shí)數(shù)x的取值范圍為____________

 

(,-3][1,+∞)

【解析】由題意只要求|x1||2x3|≤恒成立時(shí)實(shí)數(shù)x的取值范圍.

1.

只需|x1||2x3|≤1.

當(dāng)x時(shí),原式等價(jià)于1x2x3≤1,

x3x3.

當(dāng)-x1時(shí),原式等價(jià)于1x2x3≤1,

x11≤x1.

當(dāng)x≥1時(shí),原式等價(jià)于x12x3≤1,

x5x≥1.

綜上x的取值范圍為(,-3][1,+∞)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集14講練習(xí)卷(解析版) 題型:選擇題

已知雙曲線1的一個(gè)焦點(diǎn)與拋物線y24x的焦點(diǎn)重合,且雙曲線的離心率等于,則該雙曲線的方程為(  )

Ax21 Bx2y215

C.y21 D.1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集11講練習(xí)卷(解析版) 題型:選擇題

已知某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )

A24 B204 C28 D244

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-5不等式選講練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)g(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且f(x)x22x.

(1)解關(guān)于x的不等式g(x)≥f(x)|x1|;

(2)如果對(duì)?xR,不等式g(x)cf(x)|x1|恒成立,求實(shí)數(shù)c的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-5不等式選講練習(xí)卷(解析版) 題型:解答題

已知ab>0,求證:2a3b3≥2ab2a2b.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-5不等式選講 練習(xí)卷(解析版) 題型:填空題

設(shè)函數(shù)f(x)|x1||xa|(a0).若不等式f(x)≥5的解集為(,-2](3,+∞),則a的值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-4坐標(biāo)系與參數(shù)方程練習(xí)卷(解析版) 題型:填空題

在極坐標(biāo)系中,曲線Cρmsin θ(m>0),若極軸上的點(diǎn)P(2,0)與曲線C上任意兩點(diǎn)的連線所成的最大夾角是,則m________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-1幾何證明選講練習(xí)卷(解析版) 題型:解答題

如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.

(1)證明:DBDC

(2)設(shè)圓的半徑為1,BC,延長CEAB于點(diǎn)F,求BCF外接圓的半徑.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)f(x)是定義在R上以2為周期的偶函數(shù),已知x(0,1)時(shí),f(x)=lo(1-x),則函數(shù)f(x)(1,2)(  )

(A)是增函數(shù),f(x)<0

(B)是增函數(shù),f(x)>0

(C)是減函數(shù),f(x)<0

(D)是減函數(shù),f(x)>0

 

查看答案和解析>>

同步練習(xí)冊(cè)答案