(12分)已知函數(shù).
(Ⅰ)若函數(shù)的最大值為1,求實(shí)數(shù)的值;
(Ⅱ)設(shè),證明:對任意,.
(Ⅰ);
(Ⅱ)證明略。
【解析】(Ⅰ) f(x)的定義域?yàn)?0,+),. … 1分
當(dāng)a≥0時(shí),>0,故f(x)在(0,+)單調(diào)增加; … … 2分
當(dāng)a≤-1時(shí),<0, 故f(x)在(0,+)單調(diào)減少; … … 3分
當(dāng)-1<a<0時(shí),令=0,解得x=.當(dāng)x∈(0, )時(shí), >0;
x∈(,+)時(shí),<0, 故f(x)在(0, )單調(diào)增加,在(,+)單調(diào)減少. … 5分
當(dāng)-1<a<0時(shí) 有最大值,解得… 6分
(Ⅱ)不妨假設(shè)x1≥x2.由于a≤-2,故f(x)在(0,+)單調(diào)減少.
所以等價(jià)于≥4x1-4x2, … … 8分
即f(x2)+ 4x2≥f(x1)+ 4x1. 令g(x)=f(x)+4x,則
+4=. … … 10分
于是≤=≤0. … … 11分
從而g(x)在(0,+)單調(diào)減少,故g(x1) ≤g(x2),
即f(x1)+ 4x1≤f(x2)+ 4x2,故對任意x1,x2∈(0,+) ,.… 12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù).
(1)若,求的值;
(2)若對于恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省海林市高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),
(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求,的值;
(2)當(dāng),時(shí),若函數(shù)在區(qū)間[,2]上的最大值為28,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省如東縣高三12月四校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分)
已知函數(shù),
(1)若在上的最大值為,求實(shí)數(shù)的值;
(2)若對任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(3)在(1)的條件下,設(shè),對任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com