【題目】如圖,四棱錐中,,,為的中點(diǎn).
(1)求證:平面;
(2)在線段上是否存在一點(diǎn),使得平面平面?若存在,證明你的結(jié)論,若不存在,請(qǐng)說明理由.
【答案】(1)證明見解析 (2)存在的中點(diǎn)滿足要求,證明見解析
【解析】
(1)取的中點(diǎn),連接,,證明四邊形是平行四邊形,即可證明平面.
(2)取的中點(diǎn),連接,,證明四邊形為平行四邊形,可得.又平面,所以平面,結(jié)合(1),即可證明平面平面.
(1)證明:取的中點(diǎn),連接,,
因?yàn)?/span>為的中點(diǎn),所以,,
又,.所以,,
因此四邊形是平行四邊形,所以,
又平面,平面,
所以平面.
(2)取的中點(diǎn),連接,,所以,
又,所以,
又,所以四邊形為平行四邊形,
所以,
又平面,所以平面,
由(1)可知平面,
又,故平面平面,
故存在的中點(diǎn)滿足要求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸為極軸建立極坐標(biāo)系,曲線.
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)求與直線平行,且被曲線截得的弦長為的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,且,點(diǎn)分別是棱的中點(diǎn),將四邊形沿著轉(zhuǎn)動(dòng),使得與重合,形成如圖所示多面體,分別取的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若平面平面,求與平面所成的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在印度有一個(gè)古老的傳說:舍罕王打算獎(jiǎng)賞國際象棋的發(fā)明人——宰相宰相西薩班達(dá)依爾.國王問他想要什么,他對(duì)國王說:“陛下,請(qǐng)您在這張棋盤的第1個(gè)小格里,賞給我1粒麥子,在第2個(gè)小格里給2粒,第3小格給4粒,以后每一小格都比前一小格加一倍.請(qǐng)您把這樣擺滿棋盤上所有的64格的麥粒,都賞給您的仆人吧!”國王覺得這要求太容易滿足了,就命令給他這些麥粒.當(dāng)人們把一袋一袋的麥子搬來開始計(jì)數(shù)時(shí),國王才發(fā)現(xiàn):就是把全印度甚至全世界的麥粒全拿來,也滿足不了那位宰相的要求.那么,宰相要求得到的麥粒到底有多少粒?下面是四位同學(xué)為了計(jì)算上面這個(gè)問題而設(shè)計(jì)的程序框圖,其中正確的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商第一年購買某工廠商品的單價(jià)為(單位:元),在下一年購買時(shí),購買單價(jià)與其上年度銷售額(單位:萬元)相聯(lián)系,銷售額越多,得到的優(yōu)惠力度越大,具體情況如下表:
上一年度 銷售額/萬元 | ||||||
商品單價(jià)/元 |
為了研究該商品購買單價(jià)的情況,為此調(diào)查并整理了個(gè)經(jīng)銷商一年的銷售額,得到下面的柱狀圖.
已知某經(jīng)銷商下一年購買該商品的單價(jià)為(單位:元),且以經(jīng)銷商在各段銷售額的頻率作為概率.
(1)求的平均估計(jì)值.
(2)為了鼓勵(lì)經(jīng)銷商提高銷售額,計(jì)劃確定一個(gè)合理的年度銷售額(單位:萬元),年銷售額超過的可以獲得紅包獎(jiǎng)勵(lì),該工廠希望使的經(jīng)銷商獲得紅包,估計(jì)的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,,且,底面,為中點(diǎn),點(diǎn)為上一點(diǎn).
(1)求證: 平面;
(2)求二面角 的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家具廠生產(chǎn)一種辦公桌,每張辦公桌的成本為100元,出廠單價(jià)為160元,該廠為鼓勵(lì)銷售商多訂購,決定一次訂購量超過100張時(shí),每超過一張,這批訂購的全部辦公桌出廠單價(jià)降低1元.根據(jù)市場調(diào)查,銷售商一次訂購量不會(huì)超過160張.
(1)設(shè)一次訂購量為張,辦公桌的實(shí)際出廠單價(jià)為元,求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)一次性訂購量為多少時(shí),該家具廠這次銷售辦公桌所獲得的利潤最大?其最大利潤是多少元?(該家具廠出售一張辦公桌的利潤=實(shí)際出廠單價(jià)-成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的中線與中位線相交于,已知是繞旋轉(zhuǎn)過程中的一個(gè)圖形,下列命題中,錯(cuò)誤的是
A. 恒有⊥
B. 異面直線與不可能垂直
C. 恒有平面⊥平面
D. 動(dòng)點(diǎn)在平面上的射影在線段上
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com