四棱錐中,底面為平行四邊形,側(cè)面底面.已知,,,

(Ⅰ)證明;
(Ⅱ)求直線與平面所成角的正弦值.
(Ⅰ)見(jiàn)解析.(Ⅱ)

試題分析:(Ⅰ)通過(guò)作,垂足為,連結(jié),根據(jù)側(cè)面底面,得底面.應(yīng)用三垂線定理,得.(Ⅱ)立體幾何中的角的計(jì)算,一般有兩種思路,一是直接法,通過(guò)“一作,二證,三計(jì)算”等步驟,計(jì)算角;二是“間接法”,如利用圖形與其投影的面積關(guān)系,確定角.本題首先設(shè)到平面的距離為,根據(jù),求得.進(jìn)一步確定,將角用反正弦函數(shù)表示.
試題解析:(Ⅰ)作,垂足為,連結(jié),由側(cè)面底面,得底面
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022118344531.png" style="vertical-align:middle;" />,所以,
,故為等腰直角三角形,,
由三垂線定理,得

(Ⅱ)由(Ⅰ)知,依題設(shè),
,由,,得
,
的面積
連結(jié),得的面積
設(shè)到平面的距離為,由于,得
,
解得
設(shè)與平面所成角為,則
所以,直線與平面所成的角為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形均為菱形,設(shè)相交于點(diǎn),若,且.

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,平面平面,是正方形,,且、分別是線段、、的中點(diǎn).

(1)求證:平面;
(2)求異面直線、所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在多面體中,四邊形是矩形,,,平面.

(1)若點(diǎn)是中點(diǎn),求證:.
(2)求證:.
(3)若.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知斜三棱柱的底面是直角三角形, ,側(cè)棱與底面所成角為,點(diǎn)在底面上的射影落在上.

(1)求證:平面;
(2)若,且當(dāng)時(shí),求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直三棱柱中,,,D是AC的中點(diǎn).

(Ⅰ)求證:平面
(Ⅱ)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐中,底面,四邊形中,,,.
(Ⅰ)求證:平面平面
(Ⅱ)設(shè)
(ⅰ) 若直線與平面所成的角為,求線段的長(zhǎng);
(ⅱ) 在線段上是否存在一個(gè)點(diǎn),使得點(diǎn)到點(diǎn)的距離都相等?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)幾何體的三視圖如圖所示,其中主視圖和左視圖是腰長(zhǎng)為1的兩個(gè)全等的等腰直角三角形,則該幾何體的外接球的體積為(  )
A. B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點(diǎn),求證:

(1)B,C,H,G四點(diǎn)共面;
(2)平面EFA1∥平面BCHG.

查看答案和解析>>

同步練習(xí)冊(cè)答案