已知函數(shù)f(x)=x2-(a+2)x+alnx.其中常數(shù)a>0,
(Ⅰ)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a=4時(shí),給出兩類(lèi)直線:6x+y+m=0與3x-y+n=0,其中m,n為常數(shù),判斷這兩類(lèi)直線中是否存在y=f(x)的切線,若存在,求出相應(yīng)的m或n的值,若不存在,說(shuō)明理由.
(Ⅲ)設(shè)定義在D上函數(shù)y=h(x)在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若在D內(nèi)恒成立,則稱(chēng)點(diǎn)P為函數(shù)y=h(x)的“類(lèi)對(duì)稱(chēng)點(diǎn)”.
令a=4,試問(wèn)y=f(x)是否存在“類(lèi)對(duì)稱(chēng)點(diǎn)”,若存在,請(qǐng)至少求出一個(gè)“類(lèi)對(duì)稱(chēng)點(diǎn)”的橫坐標(biāo),若不存在,說(shuō)明理由.
|