已知向量
a
=(cosα,sinα),
b
=(cos(α+
π
3
),sin(α+
π
3
))
|
a
-
b
|
=
 
分析:利用向量模的性質(zhì):向量模的平方等于向量的平方,利用向量的數(shù)量積公式及三角函數(shù)的差角的余弦公式求出向量的模.
解答:解:|
a
-
b
|
2
=(
a
-
b
)
2
=
a
2
-2
a
b
+
b
2

=2-2cosαcos(α+
π
3
+sinαsin(α+
π
3
)

=2-2cos[α-(α+
π
3
)
]
2-2cos
π
3

=1
|
a
-
b
|=1

故答案為:1
點(diǎn)評(píng):本題考查向量模的平方等于向量的平方、向量的數(shù)量積公式、三角函數(shù)的和差角公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosα,1),
b
=(-2,sinα),α∈(π,
2
)
,且
a
b

(1)求sinα的值;
(2)求tan(α+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos(-θ),sin(-θ)),
b
=(cos(
π
2
-θ),sin(
π
2
-θ))

(1)求證:
a
b

(2)若存在不等于0的實(shí)數(shù)k和t,使
x
=
a
+(t2+3)
b
y
=(-k
a
+t
b
),滿足
x
y
,試求此時(shí)
k+t2
t
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosθ,sinθ),θ∈[0,π],向量
b
=(
3
,1),b=(
3
,1)
,
a
b
,則θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosα,sinα),
b
=(sinβ,-cosβ),則|
a
+
b
|最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosθ,sinθ),向量
b
=(2
2
,-1),則|3
a
-
b
|的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案