(2013•安徽)已知函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1,x2,若f(x1)=x1<x2,則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)為(  )
分析:由函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1,x2,可得f(x)=3x2+2ax+b=0有兩個(gè)不相等的實(shí)數(shù)根,必有△=4a2-12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有兩解且f(x)=x1或x2.再分別討論利用平移變換即可解出方程f(x)=x1或f(x)=x2解得個(gè)數(shù).
解答:解:∵函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1,x2,
∴f(x)=3x2+2ax+b=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=4a2-12b>0.解得x=
-2a±
4a2-12b
6
=
-a±
a2-3b
3

∵x1<x2,∴x1=
-a-
a2-3b
3
x2=
-a+
a2-3b
3

而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有兩解且f(x)=x1或x2
不妨取0<x1<x2,f(x1)>0.
①把y=f(x)向下平移x1個(gè)單位即可得到y(tǒng)=f(x)-x1的圖象,∵f(x1)=x1,可知方程f(x)=x1有兩解.
②把y=f(x)向下平移x2個(gè)單位即可得到y(tǒng)=f(x)-x2的圖象,∵f(x1)=x1,∴f(x1)-x2<0,可知方程f(x)=x2只有一解.
綜上①②可知:方程f(x)=x1或f(x)=x2.只有3個(gè)實(shí)數(shù)解.即關(guān)于x的方程3(f(x))2+2af(x)+b=0的只有3不同實(shí)根.
故選A.
點(diǎn)評(píng):本題綜合考查了利用導(dǎo)數(shù)研究函數(shù)得單調(diào)性、極值及方程解得個(gè)數(shù)、平移變換等基礎(chǔ)知識(shí),考查了數(shù)形結(jié)合的思想方法、推理能力、分類(lèi)討論的思想方法、計(jì)算能力、分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•安徽)已知A={x|x+1>0},B={-2,-1,0,1},則(?RA)∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•安徽)已知函數(shù)f(x)=4cosωx•sin(ωx+
π
4
)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間[0,
π
2
]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•安徽)已知直線y=a交拋物線y=x2于A,B兩點(diǎn),若該拋物線上存在點(diǎn)C,使得∠ACB為直角,則a的取值范圍為
[1,+∞)
[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•安徽)已知一元二次不等式f(x)<0的解集為{x|x<-1或x>
1
2
},則f(10x)>0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•安徽)已知橢圓C:
x2
a2
+
y2
b2
(a>b>0)的焦距為4,且過(guò)點(diǎn)P(
2
,
3
).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)Q(x0,y0)(x0y0≠0)為橢圓C上一點(diǎn),過(guò)點(diǎn)Q作x軸的垂線,垂足為E.取點(diǎn)A(0,2
2
),連接AE,過(guò)點(diǎn)A作AE的垂線交x軸于點(diǎn)D.點(diǎn)G是點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn),作直線QG,問(wèn)這樣作出的直線QG是否與橢圓C一定有唯一的公共點(diǎn)?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案