17.已知集合A={x|$\frac{x-5}{x+3}$≤0},B={y|y=$\sqrt{{{2015}^x}+1}$},則A∩(CRB)等于(  )
A.[-3,5]B.(-3,1)C.(-3,1]D.(-3,+∞)

分析 求出A中不等式的解集確定出A,求出y的值域確定B,求出B的補(bǔ)集,即可求出答案.

解答 解:由$\frac{x-5}{x+3}$≤0即為(x-5)(x+3)≤0,且x+3≠0,解得-3<x≤5,
∴A=(-3,5],
∵y=$\sqrt{{{2015}^x}+1}$,
∴y>1,
∴B=(1,+∞),
∴CRB=(-∞,1],
∴A∩(CRB)=(-3,1],
故選:C

點(diǎn)評 此題考查了交集及其運(yùn)算,并集及其運(yùn)算,以及補(bǔ)集的運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.“?x0∈R,x02+2x0+2≤0”的否定是?x∈R,x2+2x+2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=cosx(sinx-$\sqrt{3}$cosx)+$\frac{\sqrt{3}}{2}$.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值及取得最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2+3x-3-kex
(I) 當(dāng)x≥-5時(shí),f(x)≤0,求k的取值范圍;
(II) 當(dāng)k=-1時(shí),求證:f(x)>-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為迎接全國文明城市考核組大檢查,教育局?jǐn)M派宣傳科5名科室人員同時(shí)到3所學(xué)校督辦迎檢工作的落實(shí)情況,每校至少1人,最多2人,臨行前科室人員甲要參加一個(gè)緊急會議不能同去,需要重新分工,則重新分工數(shù)比原定分工數(shù)減少了( 。
A.36種B.54種C.72種D.118種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合 P={0,1,2},若P∩(∁zQ)=∅,則集合Q可以為( 。
A.{x|x=2a,a∈P}B.{x|x=2a,a∈P}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知A、B是拋物線y2=2px(p>0)上的兩點(diǎn),O為坐標(biāo)原點(diǎn),$\overrightarrow{OA}$•$\overrightarrow{OB}=0$,若直線AB與直線kx+y+2k=0距離的最大值是4,則p的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某中學(xué)高一年級進(jìn)行學(xué)生性別與科目偏向問卷調(diào)查,共收回56份問卷,下面是2×2列聯(lián)表:
男生女生合計(jì)
偏理科281644
偏文科4812
合計(jì)322456
(1)有多大把握認(rèn)為科目偏向與性別有關(guān)?
(2)在偏文科的在中按分層抽樣的方法選取6人,又在這6人中選取2人進(jìn)行面對面交流求選出的2名學(xué)生是女生的概率.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),若P(ξ≤2)=0.8,則P(0≤ξ≤2)=( 。
A.0.2B.0.4C.0.5D.0.6

查看答案和解析>>

同步練習(xí)冊答案