已知函數(shù)f(x)=ax+lnx(a∈R).
(Ⅰ)若a=2,求曲線y=f(x)在x=1處切線的斜率;
(Ⅱ)求f(x)的單調(diào)區(qū)間.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求出導(dǎo)數(shù),令x=1即可得到斜率;
(2)求出導(dǎo)數(shù),討論①當(dāng)a≥0時(shí),②當(dāng)a<0時(shí),分別求出單調(diào)區(qū)間,注意函數(shù)的定義域.
解答: 解:(1)a=2時(shí),f(x)=2x+lnx的導(dǎo)數(shù)f′(x)=2+
1
x
,
f′(1)=2+1=3,
故曲線y=f(x)在x=1處切線的斜率為3;
(2)f′(x)=a+
1
x
=
ax+1
x
(x>0),
①當(dāng)a≥0時(shí),由于x>0,故ax+1>0,f′(x)>0,
所以,f(x)的單調(diào)遞增區(qū)間為(0,+∞).
②當(dāng)a<0時(shí),由f′(x)=0,得x=-
1
a

在區(qū)間(0,-
1
a
)上,f′(x)>0,在區(qū)間(-
1
a
,+∞)上,f′(x)<0,
所以,函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,-
1
a
),單調(diào)遞減區(qū)間為(-
1
a
,+∞).
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和求單調(diào)區(qū)間,考查分類討論的思想方法,注意函數(shù)的定義域,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(1)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若x∈[
π
3
3
]
,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

通過(guò)研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴于老師引入概念和描述問(wèn)題所用的時(shí)間,講座開(kāi)始時(shí),學(xué)生的興趣增長(zhǎng),中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生注意力開(kāi)始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力(f(x)值越大,表示接受能力越強(qiáng)),x表示提出和講授概念的時(shí)間(單位:分),可以有以下的公式:f(x)=
-0.1x2+2.6x+43(0<x≤10)
59(10<x≤16)
-3x+107(16<x≤30)

(1)開(kāi)講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?
(2)開(kāi)講5分鐘與開(kāi)講20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在[-3,3]上的偶函數(shù)f(x)在區(qū)間[0,3]上的圖象是如圖的曲線OAB,其中點(diǎn)O,A,B的坐標(biāo)分別為(0,0),(1,2),(3,1),則函數(shù)f(x)的單調(diào)遞減區(qū)間有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在技術(shù)工程中,經(jīng)常用到雙曲正弦函數(shù)shx=
ex-e-x
2
和雙曲余弦函數(shù)chx=
ex+e-x
2
.其實(shí)雙曲正弦函數(shù)和雙曲余弦函數(shù)與我們學(xué)過(guò)的正弦函數(shù)和余弦函數(shù)相類似,比如關(guān)于正、余函數(shù)有cos(x+y)=cosxcosy-sinxsiny成立,而關(guān)于雙曲正、余弦函數(shù)滿足cb(x+y)=chxchy+shxshy.請(qǐng)你類比正弦函數(shù)和余弦函數(shù)關(guān)系式,寫出關(guān)于雙曲正弦、雙曲余弦函數(shù)的一個(gè)新關(guān)系式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=ex+1在點(diǎn)(0,2)處的切線方程為( 。
A、2x-y+2=0
B、2x+y-2=0
C、x+y-2=0
D、x-y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(m2-m-1)xm2-2m-3是冪函數(shù),且當(dāng)x∈(-∞,0)時(shí)為減函數(shù),
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)f(x)奇偶性并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直角△ABC中,
AB
=(1,1),
AC
=(2,k),則實(shí)數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知xy≠0,且
4x2y2
=-2xy,則有( 。
A、xy<0
B、xy>0
C、x>0,y>0
D、x<0,y<0

查看答案和解析>>

同步練習(xí)冊(cè)答案