【題目】四川省閬中中學某部根據(jù)運動場地的影響,但為盡大可能讓學生都參與到運動會中來,在2018春季運動會中設置了五個項目,其中屬于跑步類的兩項,分別是200米和400米,另外三項分別為跳繩、跳遠、跳高學校要求每位學生必須參加,且只參加其中一項,學校780名同學參加各運動項目人數(shù)統(tǒng)計如下條形圖:
其中參加跑步類的人數(shù)所占頻率為,為了了解學生身體健康與參加運動項目之間的關(guān)系,用分層抽樣的方法從這780名學生中抽取13人進行分析.
1求條形圖中m和n的值以及抽取的13人中參加200米的學生人數(shù);
2現(xiàn)從抽取的參加400米和跳繩兩個項目中隨機抽取4人,記其中參加400米跑的學生人數(shù)為X,求離散型隨機變量X的分布列與數(shù)學期望.
【答案】(1),,3人(2)見解析
【解析】
1由題意參加跑步類的有420人,從而求出,,根據(jù)分層抽樣法能求出抽取的13人中參加200米的學生人數(shù).
2抽取的13人中參加400米的學生人數(shù)有4人,參加跳繩的學生人數(shù)有3人,從而X的所有可能取值為1、2、3、4,分別求出相應的概率,由此能求出離散型隨機變量X的分布列和期望.
1由題意得參加跑步類的有:
,
,
,
根據(jù)分層抽樣法知:
抽取的13人中參加200米的學生人數(shù)有:人.
2由題意,抽取的13人中參加400米的學生人數(shù)有,
參加跳繩的學生人數(shù)有3人,所以X的所有可能取值為1、2、3、4,
,
,
,
,
所以離散型隨機變量X的分布列為:
X | 1 | 2 | 3 | 4 |
P |
所以
科目:高中數(shù)學 來源: 題型:
【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對應的人數(shù)表:
將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料我們能否有的把握認為“歌迷”與性別有關(guān)?
(2)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級歌迷”,已知“超級歌迷”中有2名女性,若從“超級歌迷”中任意選取2人,求至少有1名女性觀眾的概率.
附:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),).以坐標原點為極點,軸正半軸為極軸建立極坐標系,已知直線的極坐標方程為.
(1)設是曲線上的一個動點,若點到直線的距離的最大值為,求的值;
(2)若曲線上任意一點都滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近期中央電視臺播出的《中國詩詞大會》火遍全國,下面是組委會在選拔賽時隨機抽取的100名選手的成績,按成績分組,得到的頻率分布表如下所示.
題號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 0.100 | ||
第2組 | ① | ||
第3組 | 20 | ② | |
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
第6組 | 100 | 1.00 |
(1)請先求出頻率分布表中①、②位置的相應數(shù)據(jù),再完成如下的頻率分布直方圖;
(2)組委會決定在5名(其中第3組2名,第4組2名,第5組1名)選手中隨機抽取2名選接受考官進行面試,求第4組至少有1名選手被考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在以原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為,平面直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)).
(1)設直線l與曲線C交于M,N兩點,求|MN|;
(2)若點P(x,y)為曲線C上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖象向左平移個單位,得到函數(shù)的圖象,則下列說法正確的是
A. 的一個周期為 B.
C. 是圖象的一條對稱軸 D. 是偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的PK賽,兩隊各由4名選手組成,每局兩隊各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設每局比賽A隊選手獲勝的概率均為,且各局比賽結(jié)果相互獨立,比賽結(jié)束時A隊的得分高于B隊的得分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的奇函數(shù)滿足,且時,甲,乙,丙,丁四位同學有下列結(jié)論:
甲:;
乙:函數(shù)在上是增函數(shù);
丙:函數(shù)關(guān)于直線對稱;
。喝,則關(guān)于的方程在上所有根之和為其中正確的是( ).
A. 甲,乙,丁 B. 乙,丙 C. 甲,乙,丙 D. 甲,丁
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com