一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為
 

考點(diǎn):棱柱、棱錐、棱臺(tái)的體積
專題:空間位置關(guān)系與距離
分析:由題意知,這個(gè)幾何體的體積為V=S梯形ABCD×6,由此能求出結(jié)果.
解答: 解:由題意知,
這個(gè)幾何體的體積為:
V=S梯形ABCD×6
=
1
2
(2+4)×2
×6
=36.
故答案為:36.
點(diǎn)評(píng):本題考查幾何體的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x-2
+
2-x
的定義域和值域分別為( 。
A、x≥2或x≤2,y≥0
B、x=2,y=0
C、[2],y≥0
D、x≥2,y≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)常數(shù)a∈R,集合A={x|(x-1)•(x-a)≥0},B={x|x≥a-1},若A∪B=R,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
25
+
y2
m
=1(0<m<10)上的一點(diǎn)P到橢圓一個(gè)焦點(diǎn)的距離為3,則P到另一焦點(diǎn)距離為( 。
A、2B、3C、5D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,棱長(zhǎng)為a,M、N分別是AB1、A1C1上的點(diǎn),A1N=AM,
(1)求證:MN∥BB1C1C;
(2)求MN的長(zhǎng)度最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(3,0)是圓x2+y2=25內(nèi)的一個(gè)定點(diǎn),以A為直角頂點(diǎn)作Rt△ABC,且點(diǎn)B、C在圓上,試求BC中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
1
x
+alnx,x∈R.
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若對(duì)任意的x∈[1,e],都有
2
e
≤f(x)≤2e恒成立,求實(shí)數(shù)a的取值范圍.(注:e為自然對(duì)數(shù)的底數(shù).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四面體P-ABC中,PA,PB,PC兩兩垂直,設(shè)PA=PB=PC=a,則點(diǎn)P到平面ABC的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
1
3
≤a≤1,若函數(shù)f(x)=ax2-2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)-N(a).
(1)求g(a)的函數(shù)表達(dá)式;
(2)判斷函數(shù)g(a)在區(qū)間[
1
3
,1]上的單調(diào)性,并求出g(a)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案