4.在平面直角坐標系xOy中,設(shè)鈍角α的終邊與圓O:x2+y2=4交于點P(x1,y1),點P沿圓順時針移動$\frac{2π}{3}$個單位弧長后到達點Q,點Q的坐標(x2,y2),則y1+y2的取值范圍(  )
A.$[-\sqrt{3},\sqrt{3}]$B.$(\sqrt{3},2\sqrt{3}]$C.(1,2]D.$(\frac{{\sqrt{3}}}{2},\sqrt{3}]$

分析 根據(jù)三角函數(shù)的定義,即可求出函數(shù)y1+y2

解答 解:由三角函數(shù)定義知,x1=2cosα,y1=2sinα,$\frac{π}{2}$<α<π,
x2=2cos(α-$\frac{2π}{3}$),y2=2sin(α-$\frac{2π}{3}$),
則y1+y2=2sinα+2sin(α-$\frac{2π}{3}$)=2sinα+2(sinαcos$\frac{2π}{3}$-cosαsin$\frac{2π}{3}$)
=2sinα-sinα-$\sqrt{3}$cosα
=sinα-$\sqrt{3}$cosα
=2($\frac{1}{2}$sinα-$\frac{\sqrt{3}}{2}$cosα)
=2sin(α-$\frac{π}{3}$),
∵$\frac{π}{2}$<α<π,
∴$\frac{π}{6}$<α-$\frac{π}{3}$<$\frac{2π}{3}$,
∴$\frac{1}{2}$<sin(α-$\frac{π}{3}$)≤1,
∴1<2sin(α-$\frac{π}{3}$)≤2,
即y1+y2的取值范圍是(1,2],
故選C.

點評 本題主要考查三角函數(shù)的定義,兩角和與差的余弦公式,余弦函數(shù)的性質(zhì),考查學生的運算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.在單位圓O的一條直徑上隨機取一點Q,則過點Q且與該直徑垂直的弦長長度不超過1的概率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$1-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{4}$D.$1-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距為2,過右焦點和短軸一個端點的直線的傾斜角為$\frac{3π}{4}$,O為坐標原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)斜率為k的直線l與橢圓C相交于A,B兩點,記△AOB面積的最大值為Sk,證明:S1=S2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-ax-a(a∈R,e=2.71828…).
(Ⅰ)當a=e時,求函數(shù)f(x)的極值;
(Ⅱ)當a=1時,求證:對任意的正整數(shù)n,都有$\frac{2}{2+1}$×$\frac{{2}^{2}}{{2}^{2}+1}$×…×$\frac{{2}^{n}}{{2}^{n}+1}$>$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.以T=4為周期的函數(shù)f(x)=$\left\{\begin{array}{l}{λ\sqrt{1-{x}^{2}}(x∈(-1,1])}\\{3-3|x-2|(x∈(1,3])}\end{array}\right.$(其中λ>0),若方程f(x)=x恰有5個實數(shù)解,則λ的取值范圍是( 。
A.(4,8)B.(4,3$\sqrt{7}$)C.($\sqrt{15}$,3$\sqrt{7}$)D.($\sqrt{15}$,8)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知A為△ABC的內(nèi)角,在log2cosA有意義的條件下,事件“l(fā)og2cosA<-1”發(fā)生的概率為( 。
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.計算:
(1)(-2-i)(3-2i)                  
(2)$\frac{2+2i}{{{{(1+i)}^2}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.定義運算:x•y=$\left\{\begin{array}{l}x,x≤y\\ y,x>y\end{array}$,若|m+1|•|m|=|m+1|,則實數(shù)m的取值范圍是m$≤-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.中央電視臺電視公開課《開講了》需要現(xiàn)場觀眾,先邀請甲、乙、丙、丁四所大學的40名學生參加,各大學邀請的學生如表所示:
大學
人數(shù)812812
從這40名學生中按分層抽樣的方式抽取10名學生在第一排發(fā)言席就座.
(1)求各大學抽取的人數(shù);
(2)從(1)中抽取的乙大學和丁大學的學生中隨機選出2名學生發(fā)言,求這2名學生來自同一所大學的概率.

查看答案和解析>>

同步練習冊答案