1.設(shè)變量x,y滿足$\left\{\begin{array}{l}{2x+y-6≥0}\\{x+2y-6≥0}\\{y≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+3y的最小值為( 。
A.6B.10C.12D.18

分析 畫(huà)出可行域表示的平面區(qū)域,找出最優(yōu)解,求出目標(biāo)函數(shù)的最小值.

解答 解:畫(huà)出可行域$\left\{\begin{array}{l}{2x+y-6≥0}\\{x+2y-6≥0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域,如圖所示;

由$\left\{\begin{array}{l}{2x+y-6=0}\\{x+2y-6=0}\end{array}\right.$求得點(diǎn)A(2,2),
目標(biāo)函數(shù)z=2x+3y化為y=-$\frac{2}{3}$x+$\frac{z}{3}$;
當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)A時(shí),z取得最小值為
zmin=2×2+3×2=10.
故選:B.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃的應(yīng)用問(wèn)題,也考查了數(shù)形結(jié)合的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=sin(2x+$\frac{π}{6}$)的最小正周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若三條直線2x-y+4=0,x-2y+5=0,mx-3y+12=0圍成直角三角形,則m=-$\frac{3}{2}$或-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.一個(gè)四棱錐的側(cè)棱長(zhǎng)都相等,底面是正方形,且其正視圖為如圖所示的等腰三角形,則該四棱錐的體積是(  )
A.$\frac{{4\sqrt{3}}}{3}$B.$2\sqrt{3}$C.$4\sqrt{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若n是正整數(shù),則${7^n}+{7^{n-1}}C_n^1+{7^{n-2}}C_n^2+…+7C_n^{n-1}$除以9的余數(shù)是0或7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列各函數(shù)中,最小值為4的是( 。
A.$y=x+\frac{4}{x}$B.$y=sinx+\frac{4}{sinx}(0<x<π)$
C.y=4log3x+logx3D.y=4ex+e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.不等式(m+1)x2-mx+m-1<0的解集為∅,則m的取值范圍( 。
A.m<-1B.m≥$\frac{2\sqrt{3}}{3}$C.m≤-$\frac{2\sqrt{3}}{3}$D.m≥$\frac{2\sqrt{3}}{3}$或m≤-$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知拋物線y2=12x,則該拋物線的準(zhǔn)線方程為(  )
A.x=-3B.x=3C.y=-3D.y=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.“中國(guó)剩余定理”又稱“孫子定理”.1852年英國(guó)來(lái)華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問(wèn)題的解法傳至歐洲1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國(guó)剩余定理”.“中國(guó)剩余定理”講的是一個(gè)關(guān)于整除的問(wèn)題,現(xiàn)有這樣一個(gè)整除問(wèn)題:將2至2017這2016個(gè)數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列{an},則此數(shù)列的項(xiàng)數(shù)為134.

查看答案和解析>>

同步練習(xí)冊(cè)答案