【題目】設(shè)橢圓C: + =1(a>b>0),定義橢圓的“伴隨圓”方程為x2+y2=a2+b2;若拋物線x2=4y的焦點(diǎn)與橢圓C的一個(gè)短軸重合,且橢圓C的離心率為 .
(1)求橢圓C的方程和“伴隨圓”E的方程;
(2)過“伴隨圓”E上任意一點(diǎn)P作橢圓C的兩條切線PA,PB,A,B為切點(diǎn),延長PA與“伴隨圓”E交于點(diǎn)Q,O為坐標(biāo)原點(diǎn).
①證明:PA⊥PB;
②若直線OP,OQ的斜率存在,設(shè)其分別為k1 , k2 , 試判斷k1k2是否為定值,若是,求出該值;若不是,請說明理由.
【答案】
(1)解:由拋物線x2=4y的焦點(diǎn)為(0,1)與橢圓C的一個(gè)短軸端點(diǎn)重合,
∴b=1,
由橢圓C的離心率e= = = ,則a2=3,
∴橢圓的標(biāo)準(zhǔn)方程為: ,x2+y2=4
(2)解:①證明:設(shè)A(x1,y1),B(x2,y2),過點(diǎn)P過橢圓C的切線斜率存在且不為零,
設(shè)方程為y=kx+m,(k≠0),
由直線y=kx+m,過P(x1,y1),則m=y1﹣kx1,且x12+y12=4,
,消去y得:(3k2+1)x2+6kmx+3m2﹣3=0,
△=36k2m2﹣4(3k2+1)(3m2﹣3)=0,整理得:m2=3k2+1,
將m=y1﹣kx1,代入上式關(guān)于k的方程(x12﹣3)k2﹣2x1y1k+y12﹣1=0,(x12﹣3≠0),
則kPAkPB= =﹣1,(x12+y12=4),
當(dāng)切線的斜率不存在或等于零結(jié)論顯然成立,
∴PA⊥PB,
②當(dāng)直線PQ的斜率存在時(shí),
由①可知直線PQ的方程為y=kx+m,
,整理得:(k2+1)x2+2kmx+m2﹣4=0,
則△=4k2m2﹣4(k2+1)(m2﹣4),將m2=3k2+1,代入整理△=4k2+12>0,
設(shè)P(x1,y1),Q(x2,y2),則x1+x2=﹣ ,x1x2= ,
∴k1k2= = = ,
= ,
將m2=3k2+1,即可求得求得k1k2=﹣ ,
當(dāng)直線PQ的斜率不存在時(shí),易證k1k2=﹣ ,
∴綜上可知:k1k2=﹣
【解析】(1)由拋物線的方程,求得b的值,利用離心率公式,即可求得a的值,求得橢圓方程;(2)①設(shè)直線y=kx+m,代入橢圓方程,利用韋達(dá)定理及直線的斜率公式,即可求得kPAkPB=﹣1,即可證明PA⊥PB;②將直線方程代入圓方程,利用韋達(dá)定理及直線的斜率公式求得k1k2= ,代入即可求得k1k2=﹣ .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+2ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上的最小值為0,求a的值;
(3)若對于任意x≥0,f(x)≥e﹣x恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|
(Ⅰ)解不等式f(2x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,a≠0,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B分別為橢圓C: + =1(a>b>0)在x軸正半軸,y軸正半軸上的頂點(diǎn),原點(diǎn)O到直線AB的距離為 ,且|AB|= .
(1)求橢圓C的離心率;
(2)直線l:y=kx+m(﹣1≤k≤2)與圓x2+y2=2相切,并與橢圓C交于M,N兩點(diǎn),求|MN|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= 當(dāng)x∈[﹣ , ]時(shí),恒有f(x+a)<f(x),則實(shí)數(shù)a的取值范圍是( )
A.( , )
B.(﹣1, )
C.( ,0)
D.( ,﹣ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn , 則下列四個(gè)命題中,錯(cuò)誤的是( )
A.若數(shù)列{an}是公差為d的等差數(shù)列,則數(shù)列{ }的公差為 的等差數(shù)列
B.若數(shù)列{ }是公差為d的等差數(shù)列,則數(shù)列{an}是公差為2d的等差數(shù)列
C.若數(shù)列{an}是等差數(shù)列,則數(shù)列的奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別構(gòu)成等差數(shù)列
D.若數(shù)列{an}的奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別構(gòu)成公差相等的等差數(shù)列,則{an}是等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的面積為8,cosA= ,D為BC上一點(diǎn), = + ,過點(diǎn)D做AB,AC的垂線,垂足分別為E,F(xiàn),則 = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an= ,若從{an}中提取一個(gè)公比為q的等比數(shù)列{a },其中k1=1且k1<k2<…<kn , kn∈N*,則滿足條件的最小q的值為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=logax當(dāng)x>2 時(shí)恒有|y|>1,則a的取值范圍是( )
A.
B.
C.1<a≤2
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com