已知cosα=
3
5
,cos(α+β)=-
5
13
,α,β都是銳角,求cosβ.
考點(diǎn):兩角和與差的余弦函數(shù)
專題:三角函數(shù)的求值
分析:根據(jù)同角三角函數(shù)基本關(guān)系的應(yīng)用分別求得sinα和sin(α+β)的值,進(jìn)而根據(jù)余弦的兩角和公式求得答案.
解答: 解:∵α,β都是銳角,
∴sinα=
1-cos2α
=
4
5
,sin(α+β)=
1-cos2(α+β)
=
12
13
,
∴cosβ=cos(α+β-α)=cos(α+β)cosα+sin(α+β)sinα=-
5
13
×
3
5
+
4
5
×
12
13
=
33
65
點(diǎn)評(píng):本題主要考查了余弦函數(shù)的兩角和公式的應(yīng)用.注重了對(duì)學(xué)生基礎(chǔ)知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
ax+b   x<0
2x          x≥0
,且f(-2)=3,f(-1)=f(1).
(Ⅰ)求f(x)的解析式;
(Ⅱ)畫(huà)出f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校為了增強(qiáng)學(xué)生對(duì)數(shù)學(xué)史的了解,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,舉行了一次數(shù)學(xué)史知識(shí)競(jìng)賽,其中一道題是連線題,要求將4名數(shù)學(xué)家與他們所著的4本著作一對(duì)一連線,規(guī)定:每連對(duì)一條得5分,連錯(cuò)一條得-2分.某參賽者隨機(jī)用4條線把數(shù)學(xué)家與著作一對(duì)一全部連接起來(lái).
(1)求該參賽者恰好連對(duì)一條的概率.
(2)求該參賽者得分不低于6分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=sin2x+2sinxcosx+3cos2x,x∈R,
(1)求f(x)周期;
(2)求f(x)的最大值及取得最大值時(shí)x的集合;
(3)求f(x)在[0,
π
4
]上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知a=
6
,A=60°,b-c=
3
-1,求b,c和B,C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且角C=
π
3
,a+b=λc其中λ>1.
(1)若c=λ=2,求角B的值;
(2)若
AC
BC
=
1
6
(λ4+3),求邊長(zhǎng)c的最小值并判定此時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-(x+2)(x-m)(其中m>-2).g(x)=2x-2.
(Ⅰ)若命題“l(fā)og2g(x)≥1”是假命題,求x的取值范圍;
(Ⅱ)設(shè)命題p:?x∈R,f(x)<0或g(x)<0;命題q:?x∈(-1,0),f(x)g(x)<0.若p∧q是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線
2
x+y+
3
=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知圓M:x2+y2=
2
3
的切線l與橢圓相交于A、B兩點(diǎn),求證:以AB為直徑的圓過(guò)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(x-2y)n展開(kāi)式中二項(xiàng)式系數(shù)最大的只有第5項(xiàng),則n=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案